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José Mira
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Preface

The computational paradigm considered here is a conceptual, theoretical and
formal framework situated above machines and living creatures (two instantia-
tions), sufficiently solid, and still non-exclusive, that allows us:

1. to help neuroscientists to formulate intentions, questions, experiments, meth-
ods and explanation mechanisms assuming that neural circuits are the psy-
chological support of calculus;

2. to help scientists and engineers from the fields of artificial intelligence (AI)
and knowledge engineering (KE) to model, formalize and program the com-
putable part of human knowledge;

3. to establish an interaction framework between natural system computation
(NSC) and artificial system computation (ASC) in both directions, from
ASC to NSC (in computational neuroscience), and from NSC to ASC (in
bioinspired computation).

With these global purposes, we organized IWINAC 2005, the 1st International
Work Conference on the Interplay Between Natural and Artificial Computation,
which took place in Las Palmas de Gran Canaria, Canary Islands (Spain), during
June 15–18, 2005, trying to contribute to both directions of the interplay:

I: From Artificial to Natural Computation. What can computation, artificial
intelligence (AI) and knowledge engineering (KE) contribute to the under-
standing of the nervous system, cognitive processes and social behavior?
This is the scope of computational neuroscience and cognition, which uses
the computational paradigm to model and improve our understanding of
natural science.

II: From Natural Sciences to Computation, AI and KE. How can computation,
AI and KE find inspiration in the behavior and internal functioning of phys-
ical, biological and social systems to conceive, develop and build up new
concepts, materials, mechanisms and algorithms of potential value in real-
world applications? This is the scope of the new bionics, known as bioinspired
engineering and computation, as well as of natural computing.

To address the two questions posed in the scope of IWINAC 2005, we made use
of the “building of and for knowledge” concepts that distinguish three levels of
description in each calculus: the physical level (PL), where the hardware lives,
the symbol level (SL) where the programs live, and a third level, introduced by
Newell and Marr, situated above the symbol level and named by Newell as “the
knowledge level” (KL) and by Marr as the level of “the theory of calculus.” We
seek the interplay between the natural and the artificial at each one of these
three levels (PL, SL, KL).
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1. For the interplay at the physical level we consider:
– Computational Neuroscience. Tools: Conceptual, formal and com-

putational tools and methods in the modelling of neuronal processes
and neural nets: individual and collective dynamics. Mechanisms: Com-
putational modelling of neural mechanisms at the architectural level:
oscillatory/regulatory feedback loops, lateral inhibition, reflex arches,
connectivity and signal routing networks, distributed central-patterns
generators. Contributions to the library of neural circuitry. Plasticity :
Models of memory, adaptation, learning and other plasticity phenomena.
Mechanisms of reinforcement, self-organization, anatomo-physiological
coordination and structural coupling.

– Bio-inspired Circuits and Mechanisms. Electronics: Bio-inspired
electronics and computer architectures. Advanced models for ANN.
Evolvable hardware (CPLDs, FPGAs, etc.). Adaptive cellular automata.
Redundancy, parallelism and fault-tolerant computation. Retinotopic or-
ganizations. Non-conventional (Natural) Computation: Biomaterials for
computational systems. DNA, cellular and membrane computing. Sen-
sory and Motor Prostheses: Signal processing, artificial cochlea, audio-
tactile vision substitution. Artificial sensory and motor systems for hand-
icapped people. Intersensory transfer and sensory plasticity.

2. For the interplay at the symbol level we consider:
– Neuro-informatics. Symbols: From neurons to neurophysiological sym-

bols (regularities, synchronization, resonance, dynamics binding and
other potential mechanisms underlying neural coding). Neural data
structures and neural “algorithms.” Brain Databases: Neural data anal-
ysis, integration and sharing. Standardization, construction and use of
databases in neuroscience and cognition. Neurosimulators: Development
and use of biologically oriented neurosimulators. Contributions to the
understanding of the relationships between structure and function in
biology.

– Bio-inspired Programming Strategies. Behavior-Based Computa-
tional Methods: Reactive mechanisms. Self-organizing optimization. Col-
lective emergent behavior (ant colonies). Ethology and artificial life.
Evolutionary Computation: Genetic algorithms, evolutionary strategies,
evolutionary programming and genetic programming. Macroevolution
and the interplay between evolution and learning. Hybrid Approaches:
Neuro-symbolic integration. Knowledge-based ANN and connectionist
KBS. Neuro-fuzzy systems. Hybrid adaptation and learning at the sym-
bol level.

3. For the Interplay at the knowledge level we consider:
– Computational Approaches to Cognition. AI and KE: Use of AI

and KE concepts, tools and methods in the modelling of mental processes
and behavior. Contribution to the AI debate on paradigms for knowl-
edge representation and use: symbolic (representational), connectionist,
situated, and hybrid. Controversies: Open questions and controversies in
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AI and Cognition (semantics versus syntax, knowledge as mechanisms
that know, cognition without computation, etc.). Minsky, Simon, Newell,
Marr, Searle, Maturana, Clancey, Brooks, Pylyshyn, Fodor, and others.
Knowledge Modelling: Reusability of components in knowledge modelling
(libraries of tasks, methods, inferences and roles). Ontologies (generic,
domain-specific, object-oriented, methods and tasks). Knowledge repre-
sentation methodologies and knowledge edition tools.

– Cognitive Inspiration in AI and KE. Synthetic Cognition: Bio-
inspired modelling of cognitive tasks. Perception, decision-making, plan-
ning and control. Biologically plausible (user-sensitive) man–machine in-
terfaces. Natural language programming attempts. Social organizations,
distributed AI, and multi-agent systems. Bio-inspired Solutions to En-
gineering, Computational and Social Problems in Different Application
Domains: Medicine, image understanding, KBSs and ANNs for diag-
noses, therapy planning, and patient follow-up. Telemedicine. Robotic
paradigms. Dynamic vision. Path planning, map building, and behavior-
based navigation methods. Anthropomorphic robots. Health biotechnol-
ogy. Bio-inspired solutions for sustainable growth and development.

IWINAC 2005 was organized by the Universidad Nacional de Educación a Dis-
tancia (UNED) in cooperation with the Instituto Universitario de Ciencias y
Tecnoloǵıas Cibernéticas de la Universidad de Las Palmas de Gran Canaria and
the Las Palmas UNED Associated Center.

Sponsorship was obtained from the Spanish Ministerio de Ciencia y Tec-
noloǵıa and the organizing universities (UNED and Las Palmas de Gran Ca-
naria).

The chapters of these two books of proceedings correspond to the talks de-
livered at the IWINAC 2005 conference. After the refereeing process, 117 papers
were accepted for oral or poster presentation, according to the authors’ pref-
erences. We organized these papers into two volumes basically following the
topics list previously mentioned. The first volume, entitled “In Search of Mech-
anisms, Symbols, and Models Underlying Cognition,” includes all the contribu-
tions mainly related to the methodological, conceptual, formal, and experimental
developments in the fields of neurophysiology and cognitive science.

In the second volume, “Artificial Intelligence and Knowledge Engineering
Applications: A Bioinspired Approach,” we have collected the papers related to
bioinspired programming strategies and all the contributions related to the com-
putational solutions to engineering problems in different application domains.

And now is the time for acknowledgements. A task like this, organizing a
work conference with a well-defined scope, cannot be achieved without the ac-
tive engagement of a broad set of colleagues who share with us the conference
principles, foundations and objectives. First, let me express my sincere grati-
tude to all the scientific and organizing committees, in particular, the members
of these committees who acted as effective and efficient referees and as promoters
and managers of preorganized sessions on autonomous and relevant topics under
the IWINAC global scope. Thanks also to the invited speakers, Joost N. Kok,
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Dana Ballard and Juan Vicente Sánchez Andrés, for synthesizing the plenary
lectures. Finally, thanks to all the authors for their interest in our call and their
efforts in preparing the papers, condition sine qua non for these proceedings.

My debt of gratitude to José Ramón Alvarez and Félix de la Paz goes fur-
ther the frontiers of a preface. Without their collaboration IWINAC 2005 would
not have been possible, in the strictest sense. And the same is true concerning
Springer and Alfred Hofmann, for being continuously receptive and for collabo-
rating on all our editorial joint ventures on the interplay between neuroscience
and computation, from the first IWANN in Granada (1991, LNCS 540), to the
successive meetings in Sitges (1993, LNCS 686), Torremolinos (1995, LNCS 930),
Lanzarote (1997, LNCS 1240), Alicante (1999, LNCS 1606 and 1607), again in
Granada (2001, LNCS 2084 and 2085), then in Maó (Menorca) (2003, LNCS
2686 and 2687) and, now, the first IWINAC in Las Palmas.

June 2005 José Mira
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Lola Cañamero, University of Hertfordshire (UK)
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Sylvain Säıghi, Jean Tomas, Yannick Bornat,
Sylvie Renaud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

A FPGA Architecture of Blind Source Separation and Real Time
Implementation

Yong Kim, Hong Jeong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

Description and Simulation of Bio-inspired Systems Using VHDL–AMS
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Abstract. This work presents the application of cultural algorithms
operators to a new quantum-inspired evolutionary algorithm with nu-
merical representation. These operators (fission, fusion, generalization
and specialization) are used in order to provide better control over the
quantum-inspired evolutionary algorithm.We also show that the quantum-
inspired evolutionary algorithm with numerical representation behaves
in a very similar manner to a pure cultural algorithm and we propose
further investigations concerning this aspect.

1 Introduction

Many research efforts in the field of quantum computing have been made since
1990, after the demonstration that computers based on principles of quantum
mechanics can offer more processing power for some classes of problems. The
principle of superposition, which states that a particle can be in two different
states simultaneously, suggests that a high degree of parallelism can be achieved
using this kind of computers. Its superiority was shown with few algorithms
such as the Shor’s algorithm [1, 2] for factoring large numbers, and the Grover’s
algorithm [3] for searching databases. Shor’s algorithm finds the prime factors of
a n-digit number in polynomial time, while the best known classical algorithm
has a complexity of O(2n1/3

log(n)2/3). On the other hand, Grover’s algorithm
searches for an item in a non-ordered database with n items with a complexity
of O(

√
n) while the best classical algorithm has a complexity of O(n).

Research on merging evolutionary algorithms with quantum computing has
been developed since the end of the 90’s. This research can be divided in two dif-
ferent groups: one that, motivated by the lack of quantum algorithms, focus on
developing new ones by using techniques for automatically generating programs
[4]; and another which focus on developing quantum–inspired evolutionary al-
gorithms with binary [5, 6, 7] and real [8] representations which can be executed
on classical computers.

J. Mira and J.R. Álvarez (Eds.): IWINAC 2005, LNCS 3562, pp. 1–10, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 A.V. Abs da Cruz et al.

This work is an extension of [8], where new operators are proposed for
the quantum–inspired algorithm with real representation. Those new operators,
based on another class of algorithms known as Cultural Algorithms [9], are used
in order to provide a more consistent set of operators and to avoid some problems
regarding premature convergence to local minima, providing a more consistent
set of operators.

This paper is organized as follows: section 2 describes the proposed quantum-
inspired evolutionary algorithm; section 3 describes the cultural operators pro-
posed and implemented; section 4 describes the experiments that were carried
out; section 5 presents the results obtained; and finally section 6 draws some
conclusions regarding this work.

2 Quantum-Inspired Evolutionary Algorithm

Quantum-inspired evolutionary algorithms rely on the concepts of ”quantum
bits”, or qubits, and on superposition of states from quantum mechanics [5, 6].
The state of a quantum bit can be represented, using the Dirac notation, as:

|ϕ >= |α > +|β > (1)

Where α and β are complex numbers that represent probability amplitudes of
the corresponding states. |α|2 and |β|2 give the probability of the qubit to be in
state 0 and in state 1, respectively, when observed. The amplitude normalization
guarantees that:

|α|2 + |β|2 = 1 (2)

The quantum-inspired evolutionary algorithm with binary representation [5,
6] works properly in problems where this kind of representation is more suitable.
However, in some specific situations, real numbers representation is more ade-
quate such as in function optimization, where a maximum or minimum must be
found by adjusting some variables).

The proposed algorithm using real representation works as following: initially,
a set of rectangular pulses is generated for each variable that must be optimized.
This set of pulses will be used to represent probability in replacement to the α
and β values of the binary representation. The lower (l) and upper (u) bounds of
these pulses are the same as the bounds of the problem domain. The height (h)
of the pulses is such that their areas sum up to 1 or, as presented in equation 3:

h =
1

(l − u)
(3)

The algorithm’s initialization procedure begins with the definition of a value
N that indicates how many pulses will be used to represent each variable’s prob-
ability distribution function. Then, for each single pulse used in each variable,
it must be defined:

– The pulse centre in the mean point of the variable domain;
– The pulse height as the inverse of the domain length divided by N.
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At the end of this process, the sum of the N pulses related to a variable will
have a total area of 1.

Suppose, for instance, that one wishes to initialize a variable with an universe
of discourse equals to the interval [−50, 50] and wants to use 4 rectangular pulses
to represent the probability distribution function for this variable; in this case,
each pulse would have a width equal to 100, centered at zero and height equals
to 1/100/4 = 0.0025.

The resultant set of probability distribution functions creates a superposition
Qi(t) for each variable i of the problem. From this Qi(t) distribution, a set of n
points are randomly drawn, which will form the population P (t).

After choosing the individuals that will form the population P (t), it is nec-
essary to update the probability distribution Qi(t), in order to converge to the
optimal or sub-optimal solution, similarly to the conventional crossover from
classical genetic algorithms. The method employed in this work consists of choos-
ing randomly m individuals from the population P (t) using a roulette method
identical to the one used in classical genetic algorithms. Then, the central point
of the first pulse is redefined as the mean value of those m chosen individuals.
This process is repeated for each one of the N pulses that define the distribution
Qi(t). The value m is given by:

m =
n

N
(4)

Where N is the number of pulses used to represent the probability distribu-
tion function and n is size of the population P (t).

In addition, after each generation, the pulses’ width is contracted symmetri-
cally related to its center. This contraction is performed by an exponential decay
function, according to the following formula:

σ = (u− l)(1−
t
T )λ

− 1 (5)

Where σ is the pulse width, u is the domain’s upper limit, l is the lower limit,
t is the current algorithm generation, T is the total number of generations and
λ is a parameter that defines the decay rate for the pulse width.

It is important to notice that as the pulses have their widths contracted and
their mid-points changed, their sums will look less like a rectangular signal and
will start to have several different shapes.

More details on how the basic proposed quantum–inspired algorithm works
can be found in [8].

3 Cultural Operators

In the original quantum–inspired algorithm with real representation the opera-
tor responsible for contracting the pulses’ width is a very restrictive operator in
the sense that it can lead the optimization to a local minima (maxima). This
premature convergence is irreversible, since contraction is the only operator al-
lowed. This work proposes the use of 4 new operators (where one of them is
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very similar to the contraction operator) which are inspired by similar operator
that are present in the field of Cultural Algorithms. Cultural Algorithms were
introduced in [9] and a detailed description of the operators can be found in [10].

The proposed operators are based on the concept of density: the density is
calculated by counting the number of genes inside a pulse and then dividing the
total by the width of the pulse (which is the upper bound minus the lower bound
of the pulse). The pulses’ density cannot be lower than a specified threshold. The
operators introduced are (the examples represent the pulses’ boundaries with the
’[’ and ’]’ signals and the genes with the ’+’ signals):

– Specialization - this operator is similar to the cotraction operator. If the
density is lower than the acceptable threshold, the pulse is contracted.

Before using the operator: [ ++++++++++ ]
After using the operator: [ ++++++++++ ]

– Generalization - If there is an evidence of acceptable individuals outside of
the current pulse, then expand it to include them.

Before using the operator: +++ [++++++++++] ++
After using the operator: [+++ ++++++++++ ++]

– Fusion - this is a special case of generalization where two disjoint pulses are
merged when there exist acceptable individuals between them.

Before using the operator: [++++++] [++++++++++]
After using the operator: [++++++ ++++++++++]

– Fission - this is a special case of specialization where the interior of the
current pulse is removed to produce two separate pulses.

Before using the operator: [++++++ ++++++++++]
After using the operator: [++++++] [++++++++++]

The operators were used without restrictions. The algorithm is allowed to
use each one of them, one time per individual per generation.

4 Experiments

To assess the new proposed algorithm, several functions, each of them with
different characteristics, were used. A subset of real benchmark functions from
[11] were chosen, more specifically:

– The Sphere Model

f(x) =
n∑

i=1

(xi − 1)2 (6)

where xi ∈ [−5, 5]
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– The Griewank’s Function

f(x) =
1
d

n∑
i=1

(xi − 100)2 −
n∏

i=1

cos(
xi − 100√

i
) + 1 (7)

where d = 4000 and xi ∈ [−600, 600]

– The Michalewicz’ Function

f(x) = −
n∑

i=1

sin (xi) sin2m (
ix2

i

π
) (8)

where m = 10 and xi ∈ [0, π]

The n value in each of the above equations represents the number of di-
mensions used (the number of variables). In this work, the functions were op-
timized with two different values of n: n = 5 and n = 10. To compare the
results, a classical genetic algorithm was used with the parameters shown in
Table 1.

Table 1. Parameters for the classical genetic algorithm

Mutation Rate 10%
Crossover Rate 90%
Gap 40%
Population Size 100
Generations 40
Number of Evaluations 4000
Genetic Operators Arithmetical Crossover, Uniform and Creep Mutation
Selection Method Roulette with steady state

For the quantum-inspired evolutionary algorithm the set of parameters pre-
sented in Table 2 was employed.

Table 2. Parameters for the quantum–inspired evolutionary algorithm

Pulses per Variable 3
Number of Observations P (t) 100
Generations 40
Number of Evaluations 4000

These parameters have provided the best results and were obtained after sys-
tematic experiments, with several different configurations. For each experiment
20 rounds were executed and the mean value for the evaluation was calculated.
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5 Results

The results obtained for the selected functions are presented in figures 1 to 6.
Figures 1 and 2 shows the results for the Sphere function with n = 5 and n = 10
respectively. Each figure depicts the average value of the best individual in each
generation for 20 experiments.

Figures 3 and 4 show the results for the Griewank’s function with n = 5
and n = 10 respectively. Again, each figure depicts the average value of the best
individual in each generation for 20 experiments.

Those figures shows that the quantum–inspired algorithm performs better in
both configurations of the problem. Also, it is clear that the algorithm reaches
lower values and converges towards the minimum faster than its counterpart.

Finally, figures 5 and 6 present the results for the Michalewicz’s function with
n = 5 and n = 10 respectively. Each figure presents the average value of the best
individual in each generation for 20 experiments as in the case of the sphere and
Griewank functions.

In this particular case, the quantum–inspired algorithm does not reach a
value as good as the classical algorithm for the 5 dimension problem but it
performs better for the 10 dimension one. This suggests that the quantum–
inspired algorithm may perform better for more functions of high dimensionality
than the classical genetic algorithm.

Fig. 1. Comparison between the quantum–inspired(QGA) and the classical(GA) evo-
lutionary algorithms for the sphere function with 5 dimensions
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Fig. 2. Comparison between the quantum–inspired(QGA) and the classical(GA) evo-
lutionary algorithms for the sphere function with 10 dimensions

Fig. 3. Comparison between the quantum–inspired(QGA) and the classical(GA) evo-
lutionary algorithms for Griewank’s function with 5 dimensions
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Fig. 4. Comparison between the quantum–inspired(QGA) and the classical(GA) evo-
lutionary algorithms for Griewank’s function with 10 dimensions

Fig. 5. Comparison between the quantum–inspired(QGA) and the classical(GA) evo-
lutionary algorithms for Michalewicz’s function with 5 dimensions
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Fig. 6. Comparison between the quantum–inspired(QGA) and the classical(GA) evo-
lutionary algorithms for Michalewicz’s function with 10 dimensions

6 Conclusions

This paper described new operators for the quantum–inspired evolutionary al-
gorithm. They are based on operators once developed for Cultural Algorithms.
They were chosen in order to provide a more consistent way of updating the
algorithm’s state and to avoid premature convergence to local minima. The re-
sults demonstrated that the use of these operators improved the results and
maintained the desired characteristics of the algorithm such as robustness and
faster convergence.

Three different functions were used to compare the results between the classi-
cal and the quantum–inspired algorithms. Each of these functions have a different
characteristic which makes optimization difficult.

The results showed that the quantum–inspired algorithm performed better
for most functions (the only exception being the 5-dimensional version of the
Michalewicz’s function). This shows that this kind of algorithm might be a good
option for real-function optimization. However, more research must be carried
out, mainly over real world problems instead of benchmark problems.
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Abstract. Codification is a very important issue when a Genetic Al-
gorithm is designed to dealing with a combinatorial problem. In this
paper we introduce new codification schemas for the Job Shop Schedul-
ing problem which are extensions of two schemas of common use, and are
worked out from the concept of underlying probabilistic model. Some-
way the underlying probabilistic model of a codification schema accounts
for a tendency of the schema to represent solutions in some region of the
search space. We report results from an experimental study showing that
in many cases any of the new schemas results to be much more efficient
than conventional ones due to the new schema tends to represent more
promising solutions than the others. Unfortunately the selection in ad-
vance of the best schema for a given problem instance is not an easy
problem and remains still open.

1 Introduction

Genetic Algorithms (GAs) are a flexible search paradigm for dealing with com-
plex optimization and combinatorial problems. Even though a conventional GA
often produce moderate results, it is well-known that its efficiency can be im-
proved by incorporating heuristic knowledge from the problem domain in any of
the genetic operators, or by combining the GA with a local search procedure as
done, for example, by D. Mattfeld in [5] and by T. Yamada and R. Nakano in
[8] for the Job Shop Scheduling (JSS) problem.

In this paper we consider the issue of codification and propose new codifica-
tions schemas. These new schemas are worked out from the study of two schemas
commonly used in scheduling problems: conventional permutations (CP) and
permutations with repetition (PR). Through the concept of underlying proba-
bilistic model proposed in [7] we developed two new schemas termed as partial
PR (PPR) and extended PR (EPR) respectively, as extensions of PR and CP.
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These new codifications improve the capacity of CP and PR to represent good
schedules and consequently in many cases are able to improve the GA perfor-
mance as well.

The rest of the paper is organized as follows. In section 2 we formulate the
JSS problem and describe the search space of active schedules together with
the G&T algorithm that allows for greedy search over this space. In section 3
we review two common codifications for scheduling problems: CP and PR, and
propose the new models: PPR and EPR. Then in section 5 we report results from
an experimental study over a subset of problem instances taken from a standard
repository. Finally in section 6 we summarize the main conclusions and propose
a number of ideas for future work.

2 Problem Formulation and Search Space for the JSS
Problem

The JSS problem requires scheduling a set of N jobs {J0, . . . , JN−1} on a set
of M physical resources or machines {R0, . . . , RM−1}. Each job Ji consists of
a set of task or operations{θi0, . . . , θi(M−1)} to be sequentially scheduled. Each
task θil having a single resource requirement, a duration duθil and a start time
stθil whose value should be determined. The JSS has two binary constraints:
precedence constraints and capacity constrains. Precedence constraints defined by
the sequential routings of the tasks within a job translate into linear inequalities
of the type: stθil + duθil ≤ stθi(l+1) (i.e. θil before θi(l+1)). Capacity constraints
that restrict the use of each resource to only one task at a time translate into
disjunctive constraints of the form: stθil + duθil ≤ stθjk ∨ stθjk + duθjk ≤ stθil.
The objective is to come up with a feasible schedule such that the completion
time, i.e. the makespan, is minimized.

The JSS problem has interested to many researches over the last three decades.
In [4] Jain and Meeran review the most interesting approaches to this problem.
One of the first efficient approaches is the well-known algorithm proposed by
Giffler and Thomson in [3]. Here we consider a variant termed as hybrid G&T
(see Algorithm 1). The hybrid G&T algorithm is an active schedule builder.
A schedule is active if to starting earlier any operation, at least another one
must be delayed. Active schedules are good in average and at the same time
this space contains at least one optimal schedule. For these reasons it is worth
to restrict the search to this space. Moreover the search space can be reduced
by means of the parameter δ ∈ [0, 1] (see Algorithm 1, step 7). When δ < 1 the
search space gets narrowed so that it may contain none of the optimal sched-
ules. At the extreme δ = 0 the search is constrained to non-delay schedules:
in such a schedule a resource is never idle if an operation that requires the
resource is available. The experience demonstrates that as long as parameter
δ decreases, in general, the mean value of solutions within the search space
improves.
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Algorithm 1 Hybrid G&T
1. Let A = {θj0, 0 ≤ j < N};
while A �= Ø do

2. ∀θi ∈ A let stθi be the lowest start time of i if scheduled at this stage;
3. Let θ1 ∈ A such that stθ1 + duθ1 ≤ stθ + duθ, ∀θ ∈ B;
4. Let R = MR(θ1); {MR(θ) is the machine required by operation θ}
5. Let B = {θ ∈ A; MR(θ) = R, stθ < stθ1 + duθ1}
6. Let θ2 ∈ B such that stθ2 ≤ stθ, ∀θ ∈ B;
{the earliest starting time of every operation in B,if it is selected next,is a value
of the interval [stθ2, stθ1 + duθ1[}

7. Reduce the set B such that
B = {θ ∈ B : stθ ≤ stθ2 + δ((stθ1 + duθ1) − stθ2), δ ∈ [0, 1]};
{now the interval is reduced to [stθ2, stθ2 + δ((stθ1 + duθ1) − stθ2]}

8. Select θ∗ ∈ B at random and schedule it at time stθ∗;
9. Let A = A\{θ∗} ∪ {SUC(θ∗)};
{SUC(θ) is the next operation to θ in its job if any exists}

end while

3 Codification Schemas for JSS with GAs

In this work we consider a standard GA such as the one showed in Algorithm 2,
and for chromosome codification in principle we consider CP and PR schemas.
In both cases a chromosome expresses a total ordering among all operations of
the problem. For example, if we have a problem with N = 3 jobs and M = 4
machines, one possible ordering is given by the permutation ( θ10 θ00 θ01 θ20 θ21

θ11 θ21 θ02 θ12 θ13 θ03 θ22), where θij represents the operation j, 0 ≤ j < M , of
job i, 0 ≤ i < N . In the CP schema, the operations are codified by the numbers
0, . . . , N×M−1, starting from the first job, so that the previous ordering would
be codified by the chromosome (4 0 1 8 9 5 10 2 6 7 3 11). Whereas in the PR
schema an operation is codified by just its job number, so that the previous
order would be given by (1 0 0 2 2 1 2 0 1 1 0 2). PR schema was proposed by
C. Bierwirth in [1]; and CP were also used by C. Bierwirth and D. Mattfeld

Algorithm 2 Genetic Algorithm
1. Generate the Initial Population;
2. Evaluate the Population
while No termination criterion is satisfied do

3. Select chromosomes from the current population;
4. Apply the Crossover and Mutation operators to the chromosomes selected at
step 1. to generate new ones;
5. Evaluate the chromosomes generated at step 4.;
6. Apply de Acceptation criterion to the set of chromosomes selected at step 3.
together with the chromosomes generated at step 4.;

end while
7. Return the best chromosome evaluated so far;
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Fig. 1. Mean makespan evolution, over 140 generations, with CP and PR codifications
for the problem instance ABZ8. In either case the GA was run 30 times starting from
random initial populations

in [2]. In any case we chose the G&T algorithm as decoder. This only requires
modify the selection criteria a step 8 (see Algorithm 1) by a deterministic one;
in this case

8. Select θ∗ ∈ B such that θ∗ is the leftmost operation of B in the chromosome
and schedule it at time stθ∗

As genetic operators we consider generalized crossover (GOX) and mutation
by swapping two consecutive operations, as described in [2]. Regarding selection
and acceptation criteria we consider 2-2 tournament acceptation after organizing
all chromosomes of the previous generation in pairs and apply crossover and
mutation to every pair accordingly to crossover and mutation probabilities.

In [7] we have demonstrated that PR codification is better than CP. By simple
experimentation it is easy to demonstrate that an initial population composed
by random PRs is, in most of the cases, much better than a random population
of CPs. Moreover a typical GA converges towards better solutions when PRs are
used. Figure 1 shows the mean makespan convergence of the GA to solve the
problem instance ABZ8 using PR and CP codifications. Furthermore we have
also provided some explanation for such a behavior: a PR tends to represent
natural orders. We explain this by means of an example. Let us consider that
operations θ12 and θ20 require the same resource. As θ12 is the third operation of
job 0 and θ20 is the first operation of job 2, the most natural or probable order
among these two operations within an optimal (or at least a good) schedule can
be considered in principle as ( θ20 θ12). The intuition behind this assumption
is that the operation θ12 has to wait for at least two operations, θ10 and θ11,
to be processed, while the operation θ20 could be processed with no waiting at
all. Now if we consider the probability that the operation θ20 appears before the
operation θ12, in a random PR this value is 0.95 whereas it is 0.5 in a random
CP. In general, the probability that operation θli falls in a previous position to
operation θmj in a random PR depends on the value of M and the positions i
and j and is calculated by
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PPR(i, j) = (j + 1) ∗
(

M

j + 1

)
∗

M∑
k=i+1

(
M
k

)
(

2M
k+j+1

)
∗ (k + j + 1)

(1)

whereas for random CPs we have PCP (i, j) = 0.5. We call these probability
distributions underlying probabilistic models of the corresponding schemas PR
and CP respectively. Figure 2a shows the PR underlying probabilistic model for
a problem with 15 machines.

From PR and CP codifications, in particular from their probabilistic models,
the following question raises: would be it possible to improve the PR schema?,
If so, how should the underlying probabilistic model be? We conjecture that the
essential of a given probabilistic model is the slope of the probability curves, in
particular the way the slope varies as long as j varies from 0 to M−1 for a given
i. This way we look for schemas with probabilistic models having slopes raising
lower than PR, or to the contrary slopes raising more quickly than PR. In the
first case we would have an intermediate schema between CP and PR, and in
the second we would have an extension of PR in the opposite direction to CP.
From this rationale we propose two extensions of the CP and PR schemas. The
first one is termed Partial PR (PPR) and the second is Extended PR (EPR).

PPR consists on using a number of K different numbers to codify the set of
operations of each job, M being the number of machines and K being an integer
number that divides to M . In PPR for a given K the operations of job 0 are
represented by numbers 0, 1, . . . , K−1; the operations of job 1 by K, . . . , 2(K−1),
and so on. As every job has M operations each number should be repeated M/K
times. For example operations of job number 0 are numbered by 0, 1, . . . , K −
1, 0, 1, . . . ,K − 1, . . . This way the PR chromosome (1 0 0 2 2 1 2 0 1 1 0 2) is
equivalent to the PPR(K = 2) chromosome (2 0 1 4 5 3 4 0 2 3 1 5). As we can
observe CP and PR are limit cases of PPR with K = M and K = 1 respectively.

On the other hand EPR is an extension of PR that consists on representing
each operation by P numbers, instead of just 1 as in PR, taking into account
that the last of the P numbers is the one that actually represents the operation
when the decoding algorithm is applied, whereas the previous P − 1 are only
for the purpose of modify the probabilistic model in the way mentioned above.
For example, the PR chromosome (1 0 0 2 2 1 2 0 1 1 0 2) is equivalent to the
EPR(P = 2) chromosome (0 1 1 0 0 2 0 2 2 2 2 1 1 2 1 0 0 1 2 0 1 1 0 2).

Figures 2b and 2c show probability distributions corresponding to PPR and
EPR schemas, with K = 3 and P = 2 respectively, for a problem with 15
machines. As we can observe PPR curves raise lower than PR curves, whereas
EPR curves raise more quickly. In these cases the curves are calculated exper-
imentally from a random population of 5000 chromosomes. However equations
analogous to expression (2) for PR can be derived from PPR and EPR schemas
as well. PPR curves are composed by steps of size K due to for every group of
K consecutive operations with different numbers in a job all the relative orders
among them in a random chromosome are equally probable. Moreover, for the
same reason, every group of curves corresponding to K consecutive values of i,
starting from i = 0, degenerates to the same curve.
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Fig. 2. Probability profiles for a problem with M = 15 for RP , PPR and EPR models.
In any case each of the curves represents the values of P (i, j) for a fixed i whereas j
ranges from 0 to M−1. The curves from up to bottom correspond to values of i ranging
from 0 to M − 1. PR model is obtained by evaluation of expression (2), whereas PRP
and EPR are obtained empirically from random populations of 5000 chromosomes

In any case it can be observed that for PPR, the larger the value of parameter
K, the lower the rise of the curves. Whereas for EPR, the larger the value of P ,
the larger the rise. Here it is important to remark that for EPR the chromosome
gets larger with increasing values of P so that some genetic operators get more
time consuming.

4 Experimental Study

In this study we have experimented with a set of selected problems taken from a
well-known repository: the OR library. These selected problems are recognized
as hard to solve for a number of researches such as D. Mattfeld [5]. Table 1 re-
ports results about the mean values of makespan of random initial populations
regarding various codifications. As we can observe, with the only exception of
FT20 instance, PR populations are much better than CP populations. Moreover
PPR populations gets better and better as long as the value of parameter K
augments, but in neither case PPR is better than PR. Regarding EPR, popula-
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Table 1. Summary of mean values from random populations of 100 chromosomes with
different codifications. In PPR a ”-” means that the corresponding value of K is not
applicable (it does not divide to M). Chromosomes are evaluated by means of the G&T
algorithm with δ = 0.5

Problem Instance CP PPR PR EPR
Name(size) BS K=5 K=3 K=2 P=2 P=3 P=4

abz7(20 × 15) 665 940 876 854 - 818 801 795 792
abz8(20 × 15) 670 957 905 882 - 854 828 819 815
abz9(20 × 15) 686 950 915 903 - 895 883 882 881
ft10(10 × 10) 930 1265 1242 - 1218 1200 1185 1181 1181
ft20(20 × 5) 1165 1510 - - - 1531 1571 1590 1603
la21(15 × 10) 1046 1432 1380 - 1364 1324 1315 1315 1314
la24(15 × 10) 935 1321 1260 - 1216 1192 1164 1150 1141
la25(15 × 10) 977 1400 1357 - 1277 1238 1204 1193 1185
la27(20 × 10) 1235 1691 1624 - 1572 1555 1541 1542 1545
la29(20 × 10) 1153 1685 1595 - 1521 1481 1444 1431 1422
la38(15 × 15) 1196 1660 1591 1576 - 1530 1519 1512 1509
la40(15 × 15) 1222 1675 1599 1581 - 1520 1491 1479 1473

Table 2. Summary of results from the GA with various codification schemas starting
from random initial populations. The GA was ran 30 times for each problem instance
with crossover probability 0.7, mutation probability 0.2, population size of 100 chromo-
somes, 200 generations and parameter δ = 0.5 in decoding algorithm G&T. For each
one of the codifications the mean error in percent of the best solutions reached in the
30 trials is represented

Problem Instance CP PPR PR EPR
Name(size) BS K=5 K=3 K=2 P=2 P=3 P=4

abz7(20 × 15) 665 15.6 7.7 5.6 - 2.4 1.7 1.8 1.8
abz8(20 × 15) 670 17.0 8.3 11.1 - 8.3 7.8 7.8 8.0
abz9(20 × 15) 686 18.7 15.9 14.1 - 11.5 12.1 12.7 13.2
ft10(10 × 10) 930 6.5 5.1 - 3.7 3.7 4.3 4.7 5.6
ft20(20 × 5) 1165 1.4 - - - 3.2 5.7 6.8 7.4
la21(15 × 10) 1046 10.0 8.5 - 5.8 4.4 4.6 4.7 4.9
la24(15 × 10) 935 9.8 8.3 - 5.6 4.9 4.3 4.5 4.8
la25(15 × 10) 977 8.4 6.2 - 3.7 3.1 3.3 4.1 4.3
la27(20 × 10) 1235 12.9 10.7 - 7.0 4.9 4.8 4.7 4.9
la29(20 × 10) 1153 15.2 12.0 - 7.3 6.7 7.1 7.8 8.2
la38(15 × 15) 1196 10.1 7.9 7.7 - 7.3 9.1 10.3 10.9
la40(15 × 15) 1222 9.1 7.0 5.6 - 4.5 4.5 5.2 5.6

Average 11.2 8.9 8.8 5.5 5.4 5.8 6.3 6.6

tions slightly improve as long as parameter P augments, but we have to take into
account that in this case the chromosome size is proportional to the value of P .

In the next experiment we have run the GA with the codifications considered
in previous experiment; in any case starting from random initial populations.
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Table 2 reports results about the mean makespan in percent of the solutions
reached by the GA calculated as

((Mean− Best)/Best) ∗ 100, (2)

Mean being the mean of the best solutions reached in the 30 trials of each version
of the GA, and Best being the makespan of the optimal solution to the problem
instance.

As we can observe the original PR schema produces the best results in av-
erage, even though PR initial populations are not the best ones, as shown in
Table 1. However EPR produces the best results for 5 of the 12 problem in-
stances. Again problem instance FT20 is an exception, in this case CP is the
best schema, not only for initial population but also regarding the GA evolution.

From comparison of Tables 1 and 2 we can observe that in principle the
final values of the mean error reached by the successive GA versions improves
as long as the mean makespan of initial populations gets lower. However the
mean error reaches a minimum around PR schema, and beyond this point the
mean error values augment in spite of the fact that the initial populations have
a lower mean makespan. This behavior can be explained by taking into account
the degree of diversity of the population. As showed in Table 3, as the initial
populations get lower values of mean makespan, these populations get also a
lower diversity that translates into a premature convergence of the corresponding
GA version. Therefore we could conclude that, regarding a conventional GA such
as the one proposed in section 3, PR schema presents the best tradeoff between
quality and diversity, and therefore in general the GA reaches better solutions
when starting from random initial populations. However in a remarkable number
of cases EPR performs better than PR. This fact suggest us that EPR is a
suitable codification that can be considered as comparable to PR. Regarding
the remaining codifications, mainly EPR(P > 2), a control mechanism should

Table 3. Summary of standard deviation values of makespan from random populations
of 100 chromosomes with different codifications

Problem Instance CP PPR PR EPR
Name(size) BS K=5 K=3 K=2 P=2 P=3 P=4

abz7(20 × 15) 665 54.3 39.8 33.1 - 26.7 21.8 20.3 19.6
abz8(20 × 15) 670 54.3 40.2 36.8 - 30.1 24.8 22.8 21.0
abz9(20 × 15) 686 46.1 35.1 31.9 - 32.7 29.1 27.1 25.5
ft10(10 × 10) 930 76.5 70.6 - 64.8 59.7 51.6 46.0 44.1
ft20(20 × 5) 1165 72.6 - - - 62.7 54.6 48.7 44.6
la21(15 × 10) 1046 87.9 70.5 - 67.4 57.6 49.9 45.5 43.2
la24(15 × 10) 935 98.5 75.3 - 67.3 60.0 51.1 44.7 43.2
la25(15 × 10) 977 95.7 94.8 - 74.3 65.1 51.5 45.9 43.7
la27(20 × 10) 1235 92.0 70.5 - 63.2 59.9 58.9 59.5 58.2
la29(20 × 10) 1153 91.1 80.8 - 66.3 57.7 50.7 44.9 44.0
la38(15 × 15) 1196 104.4 79.7 71.5 - 59.3 49.7 45.3 44.4
la40(15 × 15) 1222 108.5 88.8 85.2 - 67.2 60.7 53.8 50.8
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be introduced into the GA to maintain an acceptable degree of diversity; not only
in the initial population, but also along the GA evolution. Maybe in this case
EPR(P > 2) could be competitive. At the same time PPR and CP in principle
seem to be not competitive with the remaining ones due to the GA converges to
much worse values in spite of the high diversity degree that these codifications
produce into the initial populations. We have also conducted experiments over
a number of 1000 generations with similar conclusions.

Regarding time consumption, CP, PPR and PR schemas needs approximately
the same values. For example an execution in the conditions reported in Table
2, that is over 200 generations, takes about 1.9 secs. for a problem of size 10×10
and about 7.5 secs. for a problem of size 20× 15. However for EPR schema the
time consumption augments with the value of parameter P so that the times
required for the 10× 10 instance are about 2, 2.3 and 2.5 secs. for values of P of
2, 3 and 4 respectively. Whereas these times are about 8.5, 9 and 10 secs. for the
20 × 15 instance. The experiments were conducted on a Pentium IV processor
at 1.7 Ghz. and 512 Mbytes of RAM, under Windows XP operating system.

5 Concluding Remarks

In this paper we have proposed two new codification schemas to solve scheduling
problems by means of genetic algorithms: PPR and EPR. These new schemas
are in fact extensions of two codifications of common use in scheduling and re-
lated problems: CP and PR. By simple experimentation we have demosntrated
that PR is in general much better than CP. We have observed that populations
of randomly generated PRs has a mean value of makespan much lower than
random populations of CPs. Moreover the convergence of a conventional GA is
much better when PR is used. In [7] we have provided an explanation to these
facts: PRs tends to represent natural orders among the operations requiring the
same resource. In other words, operations that are more likely to appear at the
beginning of a good schedule have a larger probability of appearing at the first
positions of the chromosome as well. Moreover we have formalized the explana-
tion by means of the underlying probabilistic model of a codification. This is a
probability distribution that accounts for the probability that operation at posi-
tion i in its job sequence appears before than operation at position j of another
job. By observation of the probabilistic models of CP and PR codifications we
have worked out two extensions: EPR and PPR. EPR generalized both CP and
PR and is parameterized by a value K ranging from M to 1. In principle only
values of K that divides to M are considered in order to simplify the genetic
operators. PPR(K = M) is the same as CP and PPR(K = 1) is the same as
PR. On the other hand, EPR is an extension of PR but in the opposite direc-
tion to CP. EPR is parameterized as well by a value P ≥ 1 that indicates the
number of digits we use to represent an operation. EPR(P = 1) is the same as
PR and for larger values of P has the inconvenient of requiring a chromosome
length proportional to P , what in practice restricts this value to small values as
2, 3 or 4.
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The reported experimental results shown that the performance of the GA
depends on the codification chosen. Moreover in average PR is the best schema,
however for a significative number of problem instances other schemas, generally
close to PR such as PPR with a small value of K or EPR with a small value of
P , are better. Moreover schemas far from PR such as CP and EPR with larger
values of P , are in general the worse ones. This fact suggest that it is worth to
consider schemas other than PR. However as it does not seem easy to envisage
a method to select in advance the best schema for a given problem instance,
in principle the only way is trying various schemas at the same time and take
the value provided for the best one. It would also be possible to allow the GA
consider in the initial population chromosomes codified with different schemas
and let the evolution process selecting the best one by itself.
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Abstract. A hybridization of an evolutionary algorithm (EA) with the
branch and bound method (B&B) is presented in this paper. Both tech-
niques cooperate by exchanging information, namely lower bounds in the
case of the EA, and partial promising solutions in the case of the B&B.
The multidimensional knapsack problem has been chosen as a bench-
mark. To be precise, the algorithms have been tested on large problems
instances from the OR-library. As it will be shown, the hybrid approach
can provide high quality results, better than those obtained by the EA
and the B&B on their own.

1 Introduction

Branch and Bound (B&B) [1] is an algorithm for finding optimal solutions to
combinatorial problems. Basically, the method produces convergent lower and
upper bounds for the optimal solution using an implicit enumeration scheme.
The algorithm starts from the original problem, and proceeds iteratively. In
each stage, the problem is split into subproblems such that the union of feasible
solutions for these subproblems gives the whole set of feasible solutions for the
current problem. Subproblems are further divided until they are solved, or their
upper bounds are below the best feasible solution found so far (maximization is
assumed here). Thus, the approach produces a branching tree in which each node
corresponds to a problem and the children of the node represent the subproblems
into which it is split. Several strategies can be used to traverse the search tree.
The most efficient one consists of expanding more promising (according to the
attainable solution, i.e., the upper bound) problems first, but memory resources
may be exhausted. A depth-first expansion requires less memory, but will likely
expand much more nodes than the previous strategy.

A different approach to optimization is provided by evolutionary algorithms
[2, 3] (EAs). These are powerful heuristics for optimization problems based on
principles of natural evolution, namely adaptation and survival of the fittest.
Starting from a population of randomly generated individuals (representing so-
lutions), a process consisting of selection, (promising solutions are chosen from
the population) reproduction (new solutions are created by combining selected
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ones) and replacement (some solutions are replaced by the new ones) is repeated.
A fitness function measuring the quality of the solution is used to guide the
process.

A key aspect of EAs is robustness, meaning that they can be deployed on a
wide range of problems. However, it has been shown that some kind of domain
knowledge has to be incorporated into EAs for them to be competitive with
other domain specific optimization techniques [4, 5, 6]. A promising approach to
achieve this knowledge-augmentation is the hybridization with other (domain-
specific) heuristics for the optimization problem to be solved. In this paper a
hybridization of an EA with B&B is presented. This hybridization is aimed to
combining their search capabilities in a synergetic way.

The remainder of the article is organized as follows: Sect. 2 presents the mul-
tidimensional knapsack problem (MKP) –the benchmark used to test our hybrid
model– and describes both an efficient evolutionary algorithm and two different
B&B implementations that have been successfully applied to solve the MKP.
Then, Sect. 3 discusses related work regarding the hybridization of evolutionary
algorithms and B&B models; a novel proposal for this hybridization is described
here too. Subsequently, Sect. 4 shows and analyzes the empirical results obtained
by the application of each of the described approaches (i.e., the EA, pure B&B
models and the hybrid model) on different instances of the benchmark. Finally,
Sect. 5 provides the conclusions and outlines ideas for future work.

2 The Multidimensional Knapsack Problem

Let us firstly describe the target problem, and several approaches –both meta-
heuristic and exact– used for solving it.

2.1 Description of the Problem

The Multidimensional Knapsack Problem (MKP) is a generalization of the clas-
sical knapsack problem, so it is worth starting with the description of the latter.
There is a knapsack with an upper weight limit b, and a collection of n items
with different values pj and weights rj . The problem is to choose the collection
of items which gives the highest total value without exceeding the weight limit
of the knapsack.

In the MKP, m knapsacks with different weight limits bi must be filled with
the same items. Furthermore, these items have a different weight rij for each
knapsack i. Formally, the problem can be formulated as:

maximise
n∑

j=1

pjxj , (1)

subject to
n∑

j=1

rijxj ≤ bi, i = 1, . . . , m, (2)

xj ∈ {0, 1}, j = 1, . . . , n. (3)
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Each of the m constraints in Eq. (2) is called a knapsack constraint, and
vector x describes which objects are chosen in the solution. The problem is
NP-hard [7], and can be seen as a general statement of any zero-one integer
programming problem with non-negative coefficients. Many practical problems
can be formulated as an instance of the MKP, for example, the capital budgeting
problem, project selection and capital investment, budget control, and numerous
loading problems (see e.g. [8]).

2.2 An Evolutionary Algorithm

EAs have been used in several works for solving the MKP, e.g., [9, 10, 11, 12,
13] among others. To the best of our knowledge, the EA developed by Chu
and Beasley in [11] represents the state-of-the-art in solving the MKP with
EAs. This particular algorithm has an additional advantage: it uses the natural
representation of solutions, i.e., n-bit binary strings, where n is the number of
items in the MKP. For this representation, a value of 0 or 1 in the j-th bit
indicates the value of xj in the solution.

Since this representation allows infeasible solutions, a repair operator is used
to correct them. In order to implement this operator, a preprocessing routine is
first applied to each problem to sort variables according to the decreasing order
of their pseudo-utility ratios uj ’s (the greater the ratio, the higher the chance
that the corresponding variable will be set to one in the solution, see [11] for
details). Then, an algorithm consisting in two phases (see Fig. 1) is applied to
every solution. In the first phase, variables are examined in increasing order of
uj and set to zero if feasibility is violated. In the second phase, variables are
examined in reverse order and set to one as long as feasibility is not violated.
The aim of the first phase is to obtain a feasible solution, whereas the second
phase seeks to improve its fitness.

By restricting the EA to search only the feasible region of the solution space,
the simple fitness function f(x) =

∑n
j=1 pjxj can be considered.

1: initialize Ri =
∑n

j=1
rijxj , ∀i ∈ {1, · · · , n};

2: for j = n down to 1 do /* DROP phase */
3: if (xj = 1) and (∃i ∈ {1, · · · , n} : Ri > bi) then
4: set xj ← 0;
5: set Ri ← Ri − rij , ∀i ∈ {1, · · · , n}
6: end if
7: end for
8: for j = 1 up to n do /* ADD phase */
9: if (xj = 0) and (∀i ∈ {1, · · · , n} : Ri + rij ≤ bi) then

10: set xj ← 1;
11: set Ri ← Ri + rij , ∀i ∈ {1, · · · , n}
12: end if
13: end for

Fig. 1. Repair operator for the MKP
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2.3 Branch and Bound Algorithms

Two B&B algorithms have been evaluated. The first one is a simple implemen-
tation that expands the search tree by introducing or excluding an arbitrary
item in the knapsack until a complete solution is generated. When an item j is
included, the lower bound for the problem is increased with the corresponding
profit pj (and the remaining available space is decreased by rij in each knapsack
i), whereas the upper bound is decreased by pj when the item is excluded. Of
course, infeasible solutions are pruned during the process. The problem queue is
examined in a depth-first way in order to avoid memory exhaustion when solv-
ing large problems. Although this method is very naive, it can be very efficiently
implemented and may be the only one available for other problems for which no
sophisticated heuristics have been developed.

The second implementation performs a standard linear programming (LP)-
based tree search. The algorithm solves the linear relaxation of the current prob-
lem (that is, allowing fractional values for decision variables), and considers the
problem solved if all variables have integral values in the relaxed solution. Oth-
erwise, it expands two new problems by introducing or excluding an item with
an associated fractional value (the one whose value in the LP-relaxed solution
is closest to 0.5). This method is more accurate, but is not very fast when large
problems are considered, as their relaxation may take some time to be solved.

3 Hybrid Models

In this section we present a hybrid model that integrates an EA with B&B.
Our aim is to combine the advantages of both approaches and, at the same
time, avoid (or at least minimize) their drawbacks working alone. Firstly, in
the following subsection, we briefly discuss some related works existing in the
literature regarding the hybridization of B&B techniques and EAs.

3.1 Related Work

Cotta et al. [14] used a problem-specific B&B approach for the traveling salesman
problem based on 1-trees and the Lagrangean relaxation [15], and made use of
an EA to provide bounds in order to guide the B&B search. More specifically,
they analyzed two different approaches for the integration. In the first model,
the genetic algorithm plays the role of master and the B&B is incorporated as a
tool of it. The primary idea was to build a hybrid genetic operator based in the
B&B philosophy. The second model proposed consisted of executing in parallel
the B&B algorithm with a certain number of EAs which generate a number of
solutions of different structure. The diversity provided by the independent EAs
contributed to make that edges suitable to be part of the optimal solution were
likely included in some individuals, and non-suitable edges were unlikely taken
into account. Despite these approaches showed encouraging results, the work in
[14] described only preliminary results.
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Another relevant research was developed by Nagard et al. [16], combining
a B&B tree search and an EA which was used to provide bounds for solving
flowshop scheduling problems. Later, a hybrid algorithm, combining genetic algo-
rithms and integer programming B&B approaches to solve MAX-SAT problems
was described by French et al. [17]. This hybrid algorithm gathers information
during the run of a linear programming based B&B algorithm, and uses it to
build an EA population. The EA is eventually activated, and the best solution
found is used to inject new nodes in the B&B search tree. The hybrid algorithm
is run until the search tree is exhausted, and hence it is an exact approach.
However, in some cases it can expand more nodes than the B&B alone.

More recently, Cotta and Troya [18] presented a framework for the hybridiza-
tion based on using B&B as an operator embedded in the EA. This hybrid op-
erator is used for recombination: it intelligently explores the possible children of
solutions being recombined, providing the best possible outcome. The resulting
hybrid metaheuristic provides better results than pure EAs in problems where
a full B&B exploration is unpractical on its own.

3.2 Our Hybrid Algorithm

One way to do the integration of evolutionary techniques and B&B models is
via a direct collaboration that consists of letting both techniques work alone in
parallel (i.e., let both processes perform independently), that is, at the same
level. Both processes will share the solution. There are two ways of obtaining a
benefit of this parallel execution:

– The B&B can use the lower bound provided by the EA to purge the problem
queue, deleting those problems whose upper bound is smaller than the one
obtained by the EA.

– The B&B can inject information about more promising regions of the search
space into the EA population in order to guide the EA search.

In our hybrid approach (see Fig. 2), a single solution is shared among the EA
and B&B algorithms that are executed in an interleaved way. Whenever one of
the algorithms finds a better approximation, it updates the solution and yields
control to the other algorithm.

The hybrid algorithm starts by running the EA in order to obtain a first
approximation to the solution. In this initial phase, the population is randomly
initialized and the EA executed until the solution is not improved for a cer-
tain number of iterations. This approximation can be later used by the B&B
algorithm to purge the problem queue. No information from the B&B algo-
rithm is incorporated in this initial phase of the EA, in order to avoid the injec-
tion of high-valued building blocks that could affect diversity, polarizing further
evolution.

Afterwards, the B&B algorithm is executed. Whenever a new solution is
found, it is incorporated into the EA population (replacing the worst individual),
the B&B phase is paused and the EA is run to stabilization. Periodically, pending
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Algorithm 
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Fig. 2. The hybrid algorithm

nodes in the B&B queue are incorporated into the EA population. Since these
are partial solutions and the EA population consists of full solutions, they are
completed and corrected using the repair operator. The intention of this transfer
is to direct the EA to these regions of the search space. Recall that the nodes in
the queue represent the subset of the search space still unexplored. Hence, the
EA is used for finding probably good solutions in this region. Upon finding an
improved lower bound (or upon stabilization of the EA, in case no improvement
is found), control is returned to the B&B, hopefully with an improved lower
bound. This process is repeated until the search tree is exhausted, or a time
limit is reached. The hybrid is then an anytime algorithm that provides both
a quasi-optimal solution, and an indication of the maximum distance to the
optimum.

4 Experimental Results

We have tested our algorithms with problems available at the OR-library [19]
maintained by Beasley. We took two instances per problem set. Each problem
set is characterized by a number, m, of constraints (or knapsacks), a number, n,
of items and a tightness ratio, 0 ≤ α ≤ 1. The closer to 0 the tightness ratio the
more constrained the instance.

We solved these problems on a Pentium IV PC (1700MHz and 256MB of
main memory) using the EA, the B&B and the hybrid algorithms (all of them
coded in C). A single execution for each instance was performed for the B&B
method whereas ten runs were carried out for the EA and hybrid algorithms.
The algorithms were run for 600 seconds in all cases. For the EA and the hy-
brid algorithm, the size of the population was fixed at 100 individuals that were
initialized with random feasible solutions. The probability of mutation was set
to 2 bits per string, recombination probability was set to 0.9, the binary tour-
nament selection method was used, and a standard uniform crossover operator
was chosen.
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Table 1. Results (averaged for ten runs) of the B&B algorithm, the EA, and the
hybrid thereof for problem instances of different number of items (n), knapsacks (m),
and tightness ratio (α)

GA B&B-GA
α m n B&B best mean ± std.dev best mean ± std.dev

100 24373 24381 24381.0 ± 0.0 24381 24381.0 ± 0.0
5 250 59243 59243 59211.7 ± 18.0 59312 59305.1 ± 20.7

500 120082 120095 120054.0 ± 25.1 120148 120122.0 ± 14.0
100 23064 23064 23050.2 ± 19.2 23064 23059.1 ± 3.2

0.25 10 250 59071 59133 59068.7 ± 29.1 59164 59146.3 ± 11.6
500 117632 117711 117627.3 ± 64.7 117741 117702.4 ± 20.5
100 21516 21946 21856.1 ± 112.5 21946 21946.0 ± 0.0

30 250 56277 56796 56606.9 ± 126.6 56796 56796.0 ± 0.0
500 115154 115763 115619.9 ± 79.7 115820 115779.6 ± 18.6

100 59960 59960 59960.0 ± 0.0 59965 59965.0 ± 0.0
5 250 154654 154668 154626.2 ± 31.7 154668 154668.0 ± 0.0

500 299904 299885 299842.7 ± 26.9 299904 299902.3 ± 5.1
100 60633 60633 60629.7 ± 4.9 60633 60633.0 ± 0.0

0.75 10 250 149641 149686 149622.7 ± 39.6 149704 149685.3 ± 15.1
500 306949 306976 306893.7 ± 56.0 307027 307002.7 ± 8.4
100 60574 60593 60560.9 ± 32.1 60603 60603.0 ± 0.0

30 250 149514 149514 149462.8 ± 44.4 149595 149528.6 ± 24.4
500 300309 300351 300218.8 ± 94.5 300387 300359.0 ± 21.9
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Fig. 3. Evolution of the lower bound in the three algorithms during the first 100 seconds
of execution for an problem instance with α = .75, m = 30, n = 100. Curves are
averaged for the ten runs in the case of the EA and the hybrid algorithm
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Fig. 4. Evolution of the lower bound in the three algorithms during the first 100 seconds
of execution for an problem instance with α = .75, m = 30, n = 250. Curves are
averaged for the ten runs in the case of the EA and the hybrid algorithm

The results are shown in Table 1. The first three columns indicate the sizes
(m and n) and the tightness ratio (α) for a particular instance. The next column
reports results for the B&B algorithm, whereas the last two columns report the
best and average solutions over 10 runs for the EA and the hybrid algorithm.
As it can be seen, the hybrid algorithm always outperforms the original algo-
rithms. Notice also that the difference in the mean values is notably larger than
the corresponding standard deviations, thus reinforcing the significance of the
results.

Figs. 3 and 4 show the on-line evolution of the lower bound for the three
algorithms. Notice how the hybrid algorithm yields consistently better results
all over the run. This confirms the goodness of the hybrid model as an anytime
algorithm.

We are currently testing the second implementation of the hybrid algorithm
that solves LP-relaxation of the problems. The preliminary results indicate that
the lower bounds obtained by this algorithm are not better than the ones re-
ported in this paper, although more accurate upper bounds can be achieved.

5 Conclusions and Future Work

We have presented a hybridization of an EA with a B&B algorithm. The EA pro-
vides lower bounds that the B&B can use to purge the problem queue, whereas
the B&B guides the EA to look into promising regions of the search space.
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The resulting hybrid algorithm has been tested on large instances of the MKP
problem with encouraging results: the hybrid EA produces better results than
the constituent algorithms at the same computational cost. This indicates the
synergy of this combination, thus supporting the idea that this is a profitable
approach for tackling difficult combinatorial problems. In this sense, further work
will be directed to confirm these findings on different combinatorial problems, as
well as to study alternative models for the hybridization of the B&B with EAs.
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Abstract. This paper presents an approach for the automated crypt-
analysis of substitution ciphers based on a recent evolutionary meta-
heuristic called Scatter Search. It is a population-based metaheuristic
founded on a formulation proposed two decades ago by Fred Glover. It
uses linear combinations on a population subsets to create new solutions
while other evolutionary approaches like genetic algorithms resort to ran-
domization. First, we implement the procedures of the scatter search
for the cryptanalysis of substitution ciphers. This implementation can
be used as a framework for solving permutation problems with scatter
search. Then, we test the algorithm and show the importance of the
improvement method and the contribution of subset types. Finally, we
compare its performances with those of a genetic algorithm.

Keywords: automated cryptanalysis, substitution ciphers, scatter search,
evolutionary approach, heuristic search, genetic algorithm,optimization
problem.

1 Introduction

Simple ciphers were first used hundreds years ago. A particular interest is carried
to this kind of systems because most of the modern cryptosystems use operations
of the simple ciphers as their building blocks. Many ciphers have a finite key space
and, hence, are vulnerable to an exhaustive key search attack. Yet, these systems
remain secure from such an attack because the key space size is such that the time
and resources for a search are not available. Thus, automated reasoning tools
can be used to perform attack against this systems. Many researches showed
that a range of modern-day cryptological problems can be attacked successfully
using metaheuristic search[3].

Many automated attacks have been proposed in the literature for crypt-
analysing classical ciphers. Previously, Spillman and al. [11] have published an
attack on the simple substitution cipher using a genetic algorithm, Forsyth and
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Safavi-Naini[5] presented an attack using simulated annealing. Tabu search was
also used in[2]; and recently, Russell and al.[10] used ants (ACO) to attack this
ciphers.

The evolutionary population based approach, the scatter search has been in-
troduced recently as a metaheuristic for solving complex optimization problems[8].
It is based on a formulation for integer programming developed in 1977 by
Fred Glover[6] and uses linear combination of a population subset to create
new solutions. It could be viewed as a bridge between taboo search and genetic
algorithms[7]. It has been recently applied with success to a number of combi-
natorial optimization problems, for instance, the linear ordering problem[9] and
the satisfiability problem (SAT)[4].

In this paper, scatter search is used to attack substitution ciphers. First, we
implement the procedures of the scatter search for the cryptanalysis of this class
of ciphers. Since cryptanalysis of simple ciphers is a permutation problem, then
this implementation can be used as a framework for solving permutation prob-
lems with scatter search. After, we test the method and we show the importance
of the improvement method and the contribution of subset types. Finally, we
compare its performances with those of a genetic algorithm.

1.1 Substitution Ciphers

There are several variants of substitution ciphers, the one used here is the most
general form (mono-alphabetic substitution). A detailed description of these ci-
phers is given in[2]. In simple substitution ciphers, each symbol in the plaintext
is replaced by another symbol in the ciphertext. A substitution cipher key can
be represented as a permutation of the plaintext alphabet symbols. The main
propriety of this kind of ciphers is that the n − grams statistics are unchanged
by the encryption procedure.

2 A General Overview of the Scatter Search

Basically, the scatter search method starts with a population of good and scat-
tered solutions. At each step, some of the best solutions are extracted from the
collection to be combined and included in a set called the reference set. A new
solution is then obtained as a result of applying a linear combination on the
extracted solutions. The quality of the new solution is then enhanced by an im-
provement technique such as a local search. The final solution will be included
in the reference set if it presents interesting characteristics with regards to the
solution quality and dispersion.

Although it belongs to the population-based procedures family, scatter search
differs mainly from genetic algorithms by its dynamic aspect that does not in-
volve randomization at all. Scatter search allows the combination of more than
two solutions, it gets thus at each step more information. By combining a large
number of solutions, different sub-regions of the search space are implicated to
build a solution. Besides, the reference set is modified each time a good solution
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is encountered and not at the combination process termination. Furthermore,
since this process considers at least all pairs of solutions in the reference set,
there is a practical need for keeping the cardinality of the set small (<= 20).
The scatter search can be summarized in a concise manner as follows:

1: Generate an initial population P
2: while not Stop-Condition do
3: Initialize the reference set with the solutions selected to be combined processing
4: Generate new solutions by applying the combination process
5: Improve new solutions quality
6: Insert new solutions in population with respect to quality and dispersion criteria
7: end while

The procedure stops as in many metaheuristics, when during a small number
of iterations no improvement in solutions quality is recorded or when we reach
a certain number of iterations limited by physical constraints.

The fact that the mechanisms within scatter search are not restricted to a
single uniform design allows the exploration of strategic possibilities that may
prove effective in a particular implementation. These observations and principles
lead to the following template for implementing scatter search[8]:

– A Diversification Generation Method to generate a collection of diverse trial
solutions, using an arbitrary trial solution (or seed solution) as an input.

– An Improvement Method to transform a trial solution into one or more en-
hanced trial solutions.

– A Reference Set Update Method to build and maintain a reference set con-
sisting of the b “best” solutions found (where the value of b is typically small,
e.g., no more than 20), organized to provide efficient accessing by other parts
of the method. Solutions gain membership to the reference set according to
their quality or their diversity.

– A Subset Generation Method to operate on the reference set, to produce a
subset of its solutions as a basis for creating combined solutions.

– A Solution Combination Method to transform a given subset of solutions pro-
duced by the subset generation method into one or more combined solution
vectors.

2.1 The Reference Set

The utility of the reference set RefSet consists in maintaining the b best solu-
tions found in terms of quality or diversity, where b is an empirical parameter.
RefSet is partitioned into RefSet1 and RefSet2, where RefSet1 contains the
b1 best solutions and RefSet2 contains the b2 solutions chosen to augment the
diversity. The distance between two solutions is defined to measure the solutions
diversity. We compute the solution that is not currently in the reference set and
that maximizes the distance to all this solutions currently in this set.
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2.2 The Subset Generation Method

The solution combination procedure starts by constituting subsets from the ref-
erence set that have useful properties, while avoiding the duplication of subsets
previously generated. The approach for doing this, consists in constructing four
different collections of subsets, with the following characteristics:

– Subset-Type 1: all 2-element subsets.
– Subset-Type 2: all 3-element subsets derived from the 2-element subsets by

augmenting each 2-element subset to include the best solution not in this
subset.

– Subset-Type 3: all 4-element subsets derived from the 3-element subsets by
augmenting each 3-element subset to include the best solution not in this
subset.

– Subset-Type 4: the subsets consisting of the best i elements, for i = 5 to b.

The experiments described in[1] showed that at least 80% of the solutions that
were admitted to the reference set came from combinations of type-1 subsets,
but this should not be interpreted as a justification for completely disregarding
the use of combinations other than those from type-1 subsets.

2.3 The Solution Combination

Scatter search generates new solutions by combining solutions of RefSet. Specif-
ically, the design of a combination method considers the solutions to combine
and the objective function. A new solution replaces the worst one in RefSet1
if its quality is better. In the negative, the distances between the new solution
and the solutions in RefSet are computed. If diversification is improved, the
new solution replaces the element of RefSet2 that has the smallest distance.
Otherwise, it is discarded.

3 The Design of Scatter Search for the Cryptanalysis of
Substitution Ciphers

In our case, a solution is a cipher key. A key is a permutation of the plaintext’s al-
phabet. The alphabet’s characters are ordered according to the decreasing order
of their standard frequency; e.g., in English this order is ( , e, t, a, o, n, h, i, s, r, d, l,
u,m, w, g, y, c, f, b, p, k, v, x, j, q, z). The reason for this ordering will become ap-
parent when generation method and combination method are presented.

Before implementing scatter search’s methods, we must define two basic no-
tions of the scatter search: how to estimate solution’s fitness and distance be-
tween two given solutions. This last measure is a typical characteristic of the
scatter search.
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3.1 The Fitness Function

To estimate the fitness of a given solution, this solution is used to decrypt the in-
tercepted ciphertext, then we calculate the difference between n−gram statistics
of the decrypted text with those of the language assumed known.

f (K) =
MaxNgram∑

j=1


αj ·

∑
i1,...,ij∈A

|P (i1, ..., ij) − C (i1, ..., ij)|

 (1)

where:

– A: The plaintext’s alphabet.
– αj : constants which allow assigning of different weights to each n − gram, and∑

αj = 1.
– P (i1, ..., in) : standard frequency of the n − gram (i1, ..., in).
– C (i1, ..., in) : frequency of the n − gram (i1, ..., in) in the decrypted message.

All attacks on classical ciphers use at most MaxNgram = 3, i.e. the n −
grams are restricted to unigrams, bigrams and trigrams. Function (1) provides
an estimation for the distance between frequencies of decrypted text’s n−grams
and frequencies of the plaintext’s language, many keys can provide the optimum
value, or the authentic key don’t give the optimum value. For this, we’ll use
another heuristic called ‘Word ’, which is more time-consuming. It estimates the
number of correct words in the decrypted text.

Word (P ) =
1
L

∑
M l

P ∈P

(
RecognizedWord

(
M l

P

))
(2)

RecognizedWord
(
M l

P

)
=

{
1; if M l

P ∈ Dictionary
0; else (3)

where:

– M l
P : a word belonging to the text P whose length is l.

– L : length of the text P .

Formula (2) estimates the ratio of the sum of recognized word’s lengths on
the total text’s length. The use of this function is restricted to evaluate solutions
newly inserted in RefSet at each iteration, and therefore to stop the search if
a suitable value is reached. Formula (1) will be used when an evaluation of the
solution’s quality is required in the scatter search’s methods.

3.2 The Distance Measure

The way to evaluate the distance between two solutions is an important element
of the scatter search, because the diversification aspect is essentially based on this
measure. We defined the distance between two given solutions p = (p1, . . . , pn)
and q = (q1, . . . , qn) as follow:

d (p, q) = number of permutations of pi and pi+1 to obtain p = q (4)

For example: the distance between s1 = (1, 2, 3, 4) and s2 = (2, 1, 4, 3) is 2.
s2 =

(
2, 1, 4, 3

) −→ (
1, 2, 4, 3

) −→ s1 = (1, 2, 3, 4) =⇒ d (s1, s2) = 2
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3.3 The Improvement Method

This method consists of a simple local search procedure exploring the solution’s
neighbourhood. In this context, a neighbouring solution is a solution obtained
by permuting two neighbouring elements of the current solution. The research
of the best improvement for all solutions is very expensive, therefore this imple-
mentation is restricted to explore the first improvement and stops when a local
optimum is found or after a fixed number of iterations.

3.4 The Diversification Generation Method

Our method generates the initial population by two different approaches, where
each one generates a part of the population, all generated solutions are improved
by the previous method before being inserted in the initial set P .

– The first generator uses an existing solution of good quality (seed solution)
and browses its neighbourhood (solutions being to a small distance of this
solution but with avoiding the immediate neighbours since those will be
browsed by the improvement method). The seed solution can be reached
by a previous resolution tentative, or according to a heuristic like this one:
order characters according to the decreasing order of their apparition fre-
quencies in the ciphertext, it permits to minimize the difference of unigrams
frequencies.

– The second generator employs controlled randomised process drawing upon
frequency memory to generate a set of diverse solutions.

3.5 The Solution Combination Method

This method –like the improvement method– is a problem-specific mechanism,
since it is directly related to the solution representation. The adopted method
uses a vote mechanism, it browses each solution to combine in a left to right
direction, and the new solution is constructed element by element: at each step
the vote mechanism determines the following element to add. The number of
voices granted by a solution to its element depends on the position of this element
in this solution. For example, An element being in the first position of a solution,
and after 3 iterations not appearing again in the constructed solution will receive
3 voices of its solution.

– V ote : contains the vote scores.
– F : contains for each element, the maximal fitness value obtained by its

solutions.
– OldElement : contains for each solution, a list of its not elected elements.
– (a1, . . . , aN ) : the alphabet.
– Sj [i] : denotes the ith element of the jth solution.
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Algorithm 1. CombinationMethod (S1, ..., Sp : Solution) : Solution;
1: for i = 1 to N do
2: for j = 1 to p do
3: if Sj [i] /∈ {SNew[1], . . . , SNew[i − 1]} then
4: Find k such Sj [i] = ak ; { Sj [i] is the kth alphabet character}
5: V ote[k] + + ;
6: if f(Sj) > F [k] then
7: F [k] = f(Sj) ;
8: end if
9: end if

10: end for

11: find m such V ote [m] =
N

Max
j=1

(V ote [j]) and F [m] =
N

Max
j=1

(F [j]) ;

12: SNew[i] = am ;
13: V ote[m] = 0 ; F [m] = 0 ; { //don’t consider this element at the next votes}
14: for j = 1 to p do
15: Delete am from the list OldElement[j];
16: for (each element c in OldElement[j]) do V ote[k] + +; \ c = ak

17: if Sj [i] /∈ {SNew[1], . . . , SNew[i]} then
18: Add Sj [i] in the list OldElement[j];
19: end if
20: end for
21: end for
22: Return (SNew) :

4 Experiments

The cryptanalysis procedure has been implemented in Pascal on a personal com-
puter. First, numerical tests were carried out to set the parameters of the scat-
ter search algorithm. In a second steps, we performed experiments in order to
evaluate method’s performances and to compare them with those of a genetic
algorithm. The used plaintexts become from various texts (articles, classics)
chosen at random and of total size adjoining 10 Millions of characters. Standard
frequencies have been calculated from these texts.

4.1 Setting the Algorithm’s Parameters

The Effectiveness of the n-Grams Types. The aim of this experiment is
to evaluate the effectiveness of each one of the n − grams types. We evaluated
the average number of key elements correct with varying values of the constants
αj in equation (1). We applied the following restriction to the n-gram’s weights
followed in order to keep the number of combinations of the constants α1, a2

and α3 workable.

– α1, α2, α3 ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}
– α1 + α2 + α3 = 1
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Fig. 1. The search’s results with varying weights of n − grams

Fig. 2. Number of necessary iterations to find the best solution for each subset type

Figure 1 shows that a fitness function using bigrams or trigrams have better
results than the one using unigrams, with a small advantage for the trigrams.
But the profit obtained of the grams doesn’t compensate the necessary resources
for their use. A similar result is found in[2].

Contribution of the Subset’s Types. In this experiment(Figure 2), we de-
termine types of subsets that contribute best in the generation of reference so-
lutions, and thereafter, to eliminate types of subsets that seem inert. Figure 2
shows that most reference solutions are generated by the combination of solu-
tions of subsets of type 2 and type 3, contrary to most of the scatter search’s
implementations for other problems[1]. This difference can be explained by the
combination method mechanism: high quality solutions are often close, and in
most cases the combination of those solutions returns one of the input solutions.
But when combination method have 3 or 4 input solutions, it works better and
returns new solutions of high quality. It’s clear that using all subset types will
give the best quality, but using only type 2 and 3 will give almost the same
quality and reduce significantly necessary time for the execution.
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Fig. 3. A comparison between scatter search (with and without improving) and a
genetic algorithm

4.2 Computational Results

In this section, we present results concerning performances of the cryptanalysis
procedure and a comparison with a genetic algorithm. For the genetic algorithm
implementation, we used parameters values presented in [11]: population size =
1000 and mutation rate = 0,1. The crossover and mutation operators are similar
to those presented in [2].

Figure 3 shows clearly that scatter search returns solutions of better quality
than the genetic algorithm (approximately 15%). The good performance of the
scatter search procedure is -for the most part- the result of the improvement
method which permits to explore better the neighbourhood of every considered
solution. But in return, it needs more time to converge to the returned solution
(approximately 75%).

To clearly show the importance of the improvement method; we remade the
previous experimentation, but without using the improvement method for the
research procedure. The curve (fig.3) shows that solutions returned by the scatter
search (without improving method) are of very lower quality than those returned
previously.The elimination of the improvement method from the scatter search
decreased the rate of correct elements, because the scatter search mechanism is
in this case equivalent to the genetic algorithm’s one; but the fact that scat-
ter search operates on a small population sees to it that the set of references
converges prematurely and often toward middle quality solutions.

5 Conclusion

In this paper, scatter search is used to perform an automated attack against
classical ciphers. First, we presented an implementation of the scatter search’s
procedures for the cryptanalysis of this class of ciphers. Since cryptanalysing
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simple ciphers is a permutation problem, then this implementation can be used
as a framework for solving permutation problems with scatter search. Then, we
performed tests, and the algorithm gave good results. We showed the contribu-
tion of each subset type and stressed the difference of contribution of certain
subset types between this problem and other problems. We showed also that the
robustness of the algorithm relies essentially on the improvement method.

It is clear that the heuristic methods have an important role to play in crypt-
analysis. The next step is the cryptanalysis of more complex systems which use
bit as an encoding unity. In this case, it’s impossible to perform attack based on
linguistic characteristics or frequencies analysis, but a ‘known plaintext’ attack
or a ‘chosen plaintext attack’ are used. Another perspective is to use the meta-
heuristic methods in conjunction with classical cryptanalysis techniques (like the
differential analysis) to improve their efficacy
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Abstract. In this survey we discuss different state-of-the-art approaches
of combining exact algorithms and metaheuristics to solve combinatorial
optimization problems. Some of these hybrids mainly aim at providing
optimal solutions in shorter time, while others primarily focus on getting
better heuristic solutions. The two main categories in which we divide the
approaches are collaborative versus integrative combinations. We further
classify the different techniques in a hierarchical way. Altogether, the
surveyed work on combinations of exact algorithms and metaheuristics
documents the usefulness and strong potential of this research direction.

1 Introduction

Hard combinatorial optimization problems (COPs) appear in a multitude of
real-world applications, such as routing, assignment, scheduling, cutting and
packing, network design, protein alignment, and many other fields of utmost eco-
nomic, industrial and scientific importance. The available techniques for COPs
can roughly be classified into two main categories: exact and heuristic meth-
ods. Exact algorithms are guaranteed to find an optimal solution and to prove
its optimality for every instance of a COP. The run-time, however, often in-
creases dramatically with the instance size, and often only small or moderately-
sized instances can be practically solved to provable optimality. In this case, the
only possibility for larger instances is to trade optimality for run-time, yielding
heuristic algorithms. In other words, the guarantee of finding optimal solutions
is sacrificed for the sake of getting good solutions in a limited time.

Two independent heterogeneous streams, coming from very different scientific
communities, had significant success in solving COPs:

– Integer Programming (IP) as an exact approach, coming from the operations
research community and based on the concepts of linear programming [11].

– Local search with various extensions and independently developed variants,
in the following called metaheuristics, as a heuristic approach.

Among the exact methods are branch-and-bound (B&B), dynamic program-
ming, Lagrangian relaxation based methods, and linear and integer programming
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Collaborative Combinations

Sequential Execution

Integrative Combinations

Incorporating Metaheuristics in Exact Algorithms

Incorporating Exact Algorithms in Metaheuristics

Parallel or Intertwined Execution

Combinations of Exact Algorithms and Metaheuristics

Fig. 1. Major classification of exact/metaheuristic combinations

based methods, such as branch-and-cut, branch-and-price, and branch-and-cut-
and-price [30].

Metaheuristics include, among others, simulated annealing [21], tabu search
[18], iterated local search [26], variable neighborhood search [20], and various
population-based models such as evolutionary algorithms [3], scatter search [19],
memetic algorithms [28], and various estimation of distribution algorithms [24].

Recently there have been very different attempts to combine ideas and meth-
ods from these two scientific streams. Dumitrescu and Stützle [13] describe ex-
isting combinations, focusing on local search approaches that are strengthened
by the use of exact algorithms. In their survey they concentrate on integration
and exclude obvious combinations such as preprocessing.

Here, we present a more general classification of existing approaches com-
bining exact and metaheuristic algorithms for combinatorial optimization. We
distinguish the following two main categories:

– Collaborative Combinations: By collaboration we mean that the algorithms
exchange information, but are not part of each other. Exact and heuristic
algorithms may be executed sequentially, intertwined or in parallel.

– Integrative Combinations: By integration we mean that one technique is a
subordinate embedded component of another technique. Thus, there is a dis-
tinguished master algorithm, which can be either an exact or a metaheuristic
algorithm, and at least one integrated slave.

In the following sections this classification is further refined and examples
from the literature are presented, reflecting the current state-of-the-art. Figure 1
gives an overview of this classification.

2 Collaborative Combinations

The different algorithms and approaches described in this section have in com-
mon that they are top-level combinations of metaheuristics and exact tech-
niques; no algorithm is contained in another. We further distinguish whether
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the algorithms are executed sequentially or in an intertwined or even paral-
lel way.

2.1 Sequential Execution

Either the exact method is executed as a kind of preprocessing before the meta-
heuristic, or vice-versa. Sometimes, it is difficult to say if the first technique is
used as initialization of the second, or if the second is a postprocessing of the
solution(s) generated by the first.

Clements et al. [7] propose a column generation approach in order to solve a
production-line scheduling problem. Each feasible solution of the problem con-
sists of a line-schedule for each production line. First, the squeaky wheel opti-
mization (SWO) heuristic is used to generate feasible solutions to the problem.
SWO is a heuristic using a greedy algorithm to construct a solution, which is
then analyzed in order to find the problematic elements. Higher priorities, such
that these elements are considered earlier by the greedy algorithm, are assigned
to them, and the process restarts until a termination condition is reached. SWO
is called several times in a randomized way in order to generate a set of diverse
solutions. In the second phase, the line-schedules contained in these solutions
are used as columns of a set partitioning formulation for the problem, which is
solved using MINTO1. This process always provides a solution which is at least
as good as, but usually better than the best solution devised by SWO. Reported
results indicate that SWO performs better than a tabu-search algorithm.

Applegate et al. [2] propose an approach for finding near-optimal solutions to
the traveling salesman problem. They derive a set of diverse solutions by multiple
runs of an iterated local search algorithm. The edge-sets of these solutions are
merged and the traveling salesman problem is finally solved to optimality on
this strongly restricted graph. In this way a solution is achieved that is typically
superior to the best solution of the iterated local search.

Klau et al. [22] follow a similar idea and combine a memetic algorithm with
integer programming to heuristically solve the prize-collecting Steiner tree prob-
lem. The proposed algorithmic framework consists of three parts: extensive pre-
processing, a memetic algorithm, and an exact branch-and-cut algorithm applied
as post-optimization procedure to the merged final solutions of the memetic al-
gorithm.

Plateau et al. [31] combine interior point methods and metaheuristics for solv-
ing the multiconstrained knapsack problem. The first part is an interior point
method with early termination. By rounding and applying several different as-
cent heuristics, a population of different feasible candidate solutions is gener-
ated. This set of solutions is then used as initial population for a path-relinking
(scatter search) algorithm. Extensive computational experiments are performed
on standard multiconstrained knapsack benchmark instances. Obtained results
show that the presented combination is a promising research direction.

1 http://www.isye.gatech.edu/faculty/Martin Savelsbergh/software
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Sometimes, a relaxation of the original problem is solved to optimality and
the obtained solution is repaired to act as a promising starting point for a subse-
quent metaheuristic. Often, the linear programming (LP) relaxation is used for
this purpose, and only a simple rounding scheme is needed. For example, Feltl
and Raidl [36] solve the generalized assignment problem using a hybrid genetic
algorithm (GA). The LP-relaxation of the problem is solved using CPLEX2 and
its solution is used by a randomized rounding procedure to create a population
of promising integral solutions. These solutions are, however, often infeasible;
therefore, randomized repair and improvement operators are additionally ap-
plied, yielding an even more meaningful initial population for the GA. Reported
computational experiments suggest that this type of LP-based initialization is
effective.

Vasquez and Hao [43] heuristically solve the multiconstrained knapsack prob-
lem by reducing and partitioning the search space via additional constraints that
fix the total number of items to be packed. The bounds for these constraints are
calculated by solving a modified LP-relaxation of the multiconstrained knap-
sack problem. For each remaining part of the search space, parallel tabu-search
is finally performed starting with a solution derived from the LP-relaxation of
the partial problem. This hybrid algorithm yields excellent results also for large
benchmark instances with up to 2 500 items and 100 constraints.

Lin et al. [25] describe an exact algorithm for generating the minimal set of
affine functions that describes the value function of the finite horizon partially
observed Markov decision process. In the first step a GA is used to generate
a set Γ of witness points, which is as large as possible. In the second step a
component-wise domination procedure is performed in order to eliminate redun-
dant points in Γ . The set generated so far does, in general, not fully describe the
value function. Therefore, a Mixed Integer Program (MIP) is solved to gener-
ate the missing points in the final third step of the algorithm. Reported results
indicate that this approach requires less time than some other numerical proce-
dures.

Another kind of sequential combination of B&B and a GA is described by
Nagar et al. [29] for a two-machine flowshop scheduling problem in which solution
candidates are represented as permutations of jobs. Prior to running the GA
B&B is executed down to a predetermined depth k and suitable bounds are
calculated and recorded at each node of the explicitly stored B&B tree. During
the execution of the GA the partial solutions up to position k are mapped onto
the correct tree node. If the bounds indicate that no path below this node can
lead to an optimal solution, the permutation is subjected to a mutation operator
that has been specifically designed to change the early part of the permutation
in a favorable way.

Tamura et al. [40] tackle a job-shop scheduling problem and start from its
IP formulation. For each variable, they take the range of possible values and
partition it into a set of subranges, which are then indexed. The chromosomes

2 http://www.ilog.com
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of the GA are defined so that each position represents a variable, and its value
corresponds to the index of one of the subranges. The fitness of a chromosome is
calculated using Lagrangian relaxation to obtain a bound on the optimal solution
subject to the constraints that the values of the variables fall within the correct
ranges. When the GA terminates, an exhaustive search of the region identified
as the most promising is carried out to produce the final solution.

2.2 Parallel or Intertwined Execution

Instead of a strictly sequential batch approach, exact and heuristic algorithms
may also be executed in a parallel or intertwined way. Such peer-to-peer combi-
nations of exact/heuristic techniques are less frequent. An interesting framework
for this purpose was proposed by Talukdar et al. [38, 39] with the so-called asyn-
chronous teams (A-Teams). An A-Team is a problem solving architecture con-
sisting of a collection of agents and memories connected into a strongly cyclic
directed network. Each of these agents is an optimization algorithm and can
work on the target problem, on a relaxation—i.e., a superclass—of it, or on a
subclass of the problem. The basic idea of A-Teams is having these agents work
asynchronously and autonomously on a set of shared memories. These shared
memories consist of trial solutions for some problem (the target problem, a su-
perclass, or a subclass as mentioned before), and the action of an agent consists
of modifying the memory by adding a solution, deleting a solution, or altering a
solution. A-Teams have been successfully utilized in a variety of combinatorial
optimization problems, see e.g. [5, 39].

Denzinger and Offerman [12] present a similar multi-agent based approach for
achieving cooperation between search-systems with different search paradigms.
The TECHS (TEams for Cooperative Heterogenous Search) approach consists
of teams of one or more agents using the same search paradigm. The communi-
cation between the agents is controlled by so-called send- and receive-referees,
in order to filter the exchanged data. Each agent is in a cycle between searching
and processing received information. In order to demonstrate the usefulness of
TECHS, a GA and a B&B based system for job-shop scheduling is described. The
GA and B&B agents exchange only positive information (solutions), whereas the
B&B agents can also exchange negative information (closed subtrees). Computa-
tional experiments show that the cooperation results in finding better solutions
given a fixed time-limit and in finding solutions comparable to the ones of the
best individual system alone in less time.

3 Integrative Combinations

In this section we discuss approaches of combining exact algorithms and meta-
heuristics in an integrative way such that one technique is a subordinate embed-
ded component of another technique.
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3.1 Incorporating Exact Algorithms in Metaheuristics

We start by considering techniques where exact algorithms are incorporated into
metaheuristics.

Exactly Solving Relaxed Problems. The usefulness of solutions to relax-
ations of an original problem has already been mentioned in Section 2.1. Besides
exploiting them to derive promising initial solutions for a subsequent algorithm,
they can be of great benefit for heuristically guiding neighborhood search, re-
combination, mutation, repair and/or local improvement. Examples where the
solution of the LP-relaxation and its dual were exploited in such ways are the
hybrid genetic algorithms for the multiconstrained knapsack problem from Chu
and Beasley [6] and Raidl [35].

Exactly Searching Large Neighborhoods. A common approach is to search
neighborhoods in local search based metaheuristics by means of exact algorithms.
If the neighborhoods are chosen appropriately, they can be relatively large and
nevertheless an efficient search for the best neighbor is still reasonable. Such
techniques are known as Very Large-Scale Neighborhood (VLSN) search [1].

Burke et al. [4] present an effective local and variable neighborhood search
heuristic for the asymmetric traveling salesman problem in which they have
embedded an exact algorithm in the local search part, called HyperOpt, in order
to exhaustively search relatively large promising regions of the solution space.
Moreover, they propose a hybrid of HyperOpt and 3-opt which allows to benefit
from the advantages of both approaches and gain better tours overall. Using
this hybrid within the variable neighborhood search metaheuristic framework
also allows to overcome local optima and to create tours of high quality.

Dynasearch [8] is another example where exponentially large neighborhoods
are explored. The neighborhood where the search is performed consists of all
possible combinations of mutually independent simple search steps and one Dy-
nasearch move consists of a set of independent moves that are executed in paral-
lel in a single local search iteration. Independence in the context of Dynasearch
means that the individual moves do not interfere with each other; in this case,
dynamic programming can be used to find the best combination of independent
moves. Dynasearch is restricted to problems where the single search steps are
independent, and it has so far only been applied to problems, where solutions
are represented as permutations.

For the class of partitioning problems, Thompson et al. [41, 42] defined the
concept of a cyclic exchange neighborhood, which is the transfer of single ele-
ments between several subsets in a cyclic manner; for example, a 2–exchange
move can be seen as a cyclic exchange of length two. Thompson et al. showed
that for any current solution to a partitioning problem a new, edge-weighted
graph can be constructed, where the set of nodes is split into subsets accord-
ing to a partition induced by the current solution of the partitioning problem. A
cyclic exchange for the original problem corresponds to a cycle in this new graph
that uses at most one node of each subset. Exact and heuristic methods that
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solve the problem of finding the most negative-cost subset-disjoint cycle (which
corresponds to the best improving neighbor of the current solution) have been
developed.

Puchinger et al. [34] describe a combined GA/B&B approach for solving a
real-world glass cutting problem. The GA uses an order-based representation,
which is decoded using a greedy heuristic. The B&B algorithm is applied with a
certain probability enhancing the decoding phase by generating locally optimal
subpatterns. Reported results indicate that the approach of occasionally solving
subpatterns to optimality may increase the overall solution quality.

The work of Klau et al. [22] has already been mentioned in Section 2.1 in the
context of collaborative sequential combinations. When looking at the memetic
algorithm we encounter another kind of exact/heuristic algorithm combination.
An exact subroutine for the price-collecting Steiner tree problem on trees is used
to locally improve candidate solutions.

Merging Solutions. Subspaces defined by the merged attributes of two or
more solutions can, like the neighborhoods of single solutions, also be searched
by exact techniques. The algorithms by Clements et al. [7], Applegate et al. [2],
and Klau et al. [22], which were already discussed in Section 2.1, also follow this
idea, but are of sequential collaborative nature. Here, we consider approaches
where merging is iteratively applied within a metaheuristic.

Cotta and Troya [9] present a framework for hybridizing B&B with evolu-
tionary algorithms. B&B is used as an operator embedded in the evolutionary
algorithm. The authors recall the necessary theoretical concepts on forma anal-
ysis (formae are generalized schemata), such as the dynastic potential of two
chromosomes x and y, which is the set of individuals that only carry informa-
tion contained in x and y. Based on these concepts the idea of dynastically
optimal recombination is developed. This results in an operator exploring the
potential of the recombined solutions using B&B, providing the best possible
combination of the ancestors’ features that can be attained without introducing
implicit mutation. Extensive computational experiments on different benchmark
sets comparing different crossover operators with the new hybrid one show the
usefulness of the presented approach.

Marino et al. [27] present an approach where a GA is combined with an exact
method for the Linear Assignment Problem (LAP) to solve the graph coloring
problem. The LAP algorithm is incorporated into the crossover operator and
generates the optimal permutation of colors within a cluster of nodes, hereby
preventing the offspring to be less fit than its parents. The algorithm does not
outperform other approaches, but provides comparable results. The main con-
clusion is that solving the LAP in the crossover operator strongly improves the
performance of the GA compared to the GA using crossover without LAP.

Exact Algorithms as Decoders. In evolutionary algorithms, candidate so-
lutions are sometimes only incompletely represented in the chromosome, and
an exact algorithm is used as decoder for determining the missing parts in an
optimal way.
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Staggemeier et al. [37], for example, present a hybrid genetic algorithm to
solve a lot-sizing and scheduling problem minimizing inventory and backlog
costs of multiple products on parallel machines. Solutions are represented as
product subsets for each machine at each period. Corresponding optimal lot
sizes are determined when the solution is decoded by solving a linear pro-
gram. The approach outperforms a MIP formulation of the problem solved using
CPLEX.

3.2 Incorporating Metaheuristics in Exact Algorithms

We now turn to techniques where metaheuristics are embedded within exact
algorithms.

Metaheuristics for Obtaining Incumbent Solutions and Bounds. In
general, heuristics and metaheuristics are often used to determine bounds and
incumbent solutions in B&B approaches. For example, Woodruff [44] describes
a chunking-based selection strategy to decide at each node of the B&B tree
whether or not reactive tabu search is called in order to eventually find a better
incumbent solution. The chunking-based strategy measures a distance between
the current node and nodes already explored by the metaheuristic in order to
bias the selection toward distant points. Reported computational results indicate
that adding the metaheuristic improves the B&B performance.

Metaheuristics for Column and Cut Generation. In branch-and-cut and
branch-and-price algorithms, the dynamic separation of cutting-planes and the
pricing of columns, respectively, is sometimes done by means of heuristics in-
cluding metaheuristics in order to speed up the whole optimization process.

Filho and Lorena [14] apply a heuristic column generation approach to graph
coloring. They describe the principles of their constructive genetic algorithm
and give a column generation formulation of the problem. The GA is used
to generate the initial columns and to solve the slave problem (the weighted
maximum independent set problem) at every iteration. Column generation is
performed as long as the GA finds columns with negative reduced costs. The
master problem is solved using CPLEX. Some encouraging results are
presented.

Puchinger and Raidl [32, 33] propose new integer linear programming for-
mulations for the three-stage two-dimensional bin packing problem. Based on
these formulations, a branch-and-price algorithm was developed in which fast
column generation is performed by applying a hierarchy of four methods: (a) a
greedy heuristic, (b) an evolutionary algorithm, (c) solving a restricted form of
the pricing problem using CPLEX, and finally (d) solving the complete pricing
problem using CPLEX. Computational experiments on standard benchmark in-
stances document the benefits of the new approach. The combination of all four
pricing algorithms in the proposed branch-and-price framework yields the best
results in terms of the average objective value, the average run-time, and the
number of instances solved to proven optimality.
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Metaheuristics for Strategic Guidance of Exact Search. French et al.
[16] present a GA/B&B hybrid to solve feasibility and optimization IP problems.
Their hybrid algorithm combines the generic B&B of the MIP-solver XPRESS-
MP3 with a steady-state GA. It starts by traversing the B&B tree. During this
phase, information from nodes is collected in order to suggest chromosomes to
be added to the originally randomly initialized GA-population. When a certain
criterion is fulfilled, the GA is started using the augmented initial population.
When the GA terminates, its fittest solution is passed back and grafted onto
the B&B tree. Full control is given back to the B&B-engine, after the newly
added nodes were examined to a certain degree. Reported results on MAX-SAT
instances show that this hybrid approach yields better solutions than B&B or
the GA alone.

Kotsikas and Fragakis [23] determine improved node selection strategies
within B&B for solving MIPs by using genetic programming (GP). After run-
ning B&B for a certain amount of time, information is collected from the B&B
tree and used as training set for GP, which is performed to find a node selection
strategy more appropriate for the specific problem at hand. The following second
B&B phase then uses this new node selection strategy. Reported results show
that this approach has potential, but needs to be enhanced in order to be able
to compete with today’s state-of-the-art node selection strategies.

Applying the Spirit of Metaheuristics. Last but not least, there are a few
approaches where it is tried to bring the spirit of local search based techniques
into B&B. The main idea is to first search some neighborhood of incumbent solu-
tions more intensively before turning to a classical node selection strategy. How-
ever, there is no explicit metaheuristic, but B&B itself is used for doing the local
search. The metaheuristic may also be seen to be executed in a “virtual” way.

Fischetti and Lodi [15] introduced local branching, an exact approach combin-
ing the spirit of local search metaheuristics with a generic MIP-solver (CPLEX).
They consider general MIPs with 0-1 variables. The idea is to iteratively solve
a local subproblem corresponding to a classical k-OPT neighborhood using the
MIP-solver. This is achieved by introducing a local branching constraint based
on an incumbent solution x, which partitions the search space into the k-OPT
neighborhood and the rest: ∆(x, x) ≤ k and ∆(x, x) ≥ k + 1, respectively, with
∆ being the Hamming distance of the 0-1 variables. The first subproblem is
solved, and if an improved solution could be found, a new subproblem is devised
and solved; this is repeated as long as an improved solution is found. If the
process stops, the rest of the problem is solved in a standard way. This basic
mechanism is extended by introducing time limits, automatically modifying the
neighborhood size k and adding diversification strategies in order to improve the
performance. Reported results are promising.

Danna et al. [10] present an approach called Relaxation Induced Neighbor-
hood Search (RINS) in order to explore the neighborhoods of promising MIP

3 http://www.dashoptimization.com/
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solutions more intensively. The main idea is to occasionally devise a sub-MIP at
a node of the B&B tree that corresponds to a certain neighborhood of an incum-
bent solution: First, variables having the same values in the incumbent and in
the current solution of the LP-relaxation are fixed. Second, an objective cutoff
based on the objective value of the incumbent is set. Third, a sub-MIP is solved
on the remaining variables. The time for solving this sub-MIP is limited. If a
better incumbent could be found during this process, it is passed to the global
MIP-search which is resumed after the sub-MIP termination. CPLEX is used
as MIP-solver. The authors experimentally compare RINS to standard CPLEX,
local branching, combinations of RINS and local branching, and guided dives.
Results indicate that RINS often performs best.

4 Conclusions

We gave a survey on very different, existing approaches for combining exact
algorithms and metaheuristics. The two main categories in which we divided
these techniques are collaborative and integrative combinations. Some of the
combinations are dedicated to very specific combinatorial optimization problems,
whereas others are designed to be more generally useful. Altogether, the existing
work documents that both, exact optimization techniques and metaheuristics,
have specific advantages which complement each other. Suitable combinations
of exact algorithms and metaheuristics can benefit much from synergy and often
exhibit significantly higher performance with respect to solution quality and
time. Some of the presented techniques are mature, whereas others are still in
their infancy and need substantial further research in order to make them fully
developed. Future work on such hybrid systems is highly promising.
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Abstract. In this work we consider the extension of Genetic-Independent
Component Analysis Algorithms (GA-ICA) with guiding operators and
prove their convergence to the optimum. This novel method for Blindly
Separating unobservable independent component Sources (BSS) consists
of novel guiding genetic operators (GGA) and finds the separation ma-
trix which minimizes a contrast function. The convergence is shown un-
der little restrictive conditions for the guiding operator: its effect must
disappear in time like the simulated annealing.

1 Introduction

The starting point in the ICA research can be found in the 60’s where a princi-
ple of redundancy reduction as a coding strategy in neurons, using statistically
independent features, was suggested by Barlow. ICA algorithms have been ap-
plied successfully to several fields such as biomedicine, speech, sonar and radar,
signal processing, etc. [1] and more recently also to time series forecasting [2].
Any abstract task to be accomplished can be viewed as a search through a space
of potential solutions and whenever we work with large spaces, GAs are suitable
artificial intelligence techniques for developing this optimization.

The extensive use of ICA as the statistical technique for solving BSS, may
have lead in some situations to the erroneous utilization of both concepts as
equivalent. In any case, ICA is just the technique which in certain situations
can be sufficient to solve a given problem, that of BSS. In fact, statistical in-
dependence insures separation of sources in linear mixtures, up to the known
indeterminacies of scale and permutation. However, generalizing to the situa-
tion in which mixtures are the result of an unknown transformation (linear or
not) of the sources, independence alone is not a sufficient condition in order to
accomplish BSS successfully.

In this work we prove how guided GA-ICA algorithms converge to the op-
timum. We organize the essay as follows. Section 3 introduces the linear ICA
model (the post-nonlinear model as an alternative to the unconstrained pure
nonlinear model is straight-forward). The proof of the convergence is detailed in
the rest of the paper. In section 7, we complete the work with some experiments,
using image signals. Finally we state some conclusions in section 8.
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2 Definition of ICA

We define ICA using a statistical latent variables model (Jutten & Herault,
1991). Assuming the number of sources n is equal to the number of mixtures,
the linear model can be expressed as:

xj(t) = bj1s1 + bj2s2 + . . . + bjnsn ∀j = 1 . . . n , (1)

where we explicitly emphasize the time dependence of the samples of the random
variables and assume that both the mixture variables and the original sources
have zero mean without loss of generality. Using matrix notation instead of sums
and including additive noise, the latter mixing model can be written as:

x(t) = B · s(t) + b(t) , or (2)

s(t) = A · x(t) + c(t) , where A = B−1, c(t) = −B−1 · b(t) . (3)

Due to the nature of the mixing model we are able to estimate the original
sources s̃i and the de-mixing weights bij applying i.e. ICA algorithms based on
higher order statistics like cumulants.

s̃i =
N∑

i=1

bijxj (4)

Using vector-matrix notation and defining a time series vector x = (x1, . . . ,
xn)T , s, s̃ and the matrix A = {aij} and B = {bij} we can write the overall
process as:

s̃ = Bx = BAs = Gs (5)

where we define G as the overall transfer matrix. The estimated original sources
will be, under some conditions included in the Darmois-Skitovich theorem,
a permuted and scaled version of the original ones. Thus, in general, it is only
possible to find G such that G = PD where P is a permutation matrix and D
is a diagonal scaling matrix.

2.1 Post-Non-linear Model

The linear assumption is an approximation of nonlinear phenomena in many real
world situations. Thus, the linear assumption may lead to incorrect solutions.
Hence, researchers in BSS have started addressing the nonlinear mixing models,
however a fundamental difficulty in nonlinear ICA is that it is highly non-unique
without some extra constraints, therefore finding independent components does
not lead us necessarily to the original sources.

Blind source separation in the nonlinear case is, in general, impossible. Taleb
and Jutten added some extra constraints to the nonlinear mixture so that the
nonlinearities are independently applied in each channel after a linear mixture
(see Fig. 2). In this way, the indeterminacies are the same as for the basic linear
instantaneous mixing model: invertible scaling and permutation.
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Fig. 1. Schematic Representation of the Separation System in ICA-GA

Fig. 2. Post-nonlinear model

The mixture model can be described by the following equation:

x(t) = F (A · s(t)) (6)

The unmixing stage, which will be performed by the algorithm here proposed
is expressed by Equation 7:

y(t) = W · G (x(t)) (7)

The post-nonlinearity assumption is reasonable in many signal processing
applications where the nonlinearities are introduced by sensors and preamplifiers,
as usually happens in speech processing. In this case, the nonlinearity is assumed
to be introduced by the signal acquisition system.

3 ICA and Statistical Independence Criterion

We define ICA using a statistical latent variables model (Jutten & Herault,
1991). Assuming the number of sources n is equal to the number of mixtures,
the linear model can be expressed, using vector-matrix notation and defining
a time series vector x = (x1, . . . , xn)T , s, s̃ and the matrix A = {aij} and
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B = {bij} as s̃ = Bx = BAs = Gs where we define G as the overall transfer
matrix. The estimated original sources s̃ will be a permuted and scaled version of
the original ones s [4]. The statistical independence of a set of random variables
can be described in terms of their joint and individual probability distribution.
This is equivalent to the minimization of [3]:

Π =
∑

{λ,λ∗}
βλβ∗

λ∗Γλ,λ∗ |λ|+ |λ∗| < λ̃ (8)

where the expression defines a summation of cross cumulants [3] and is used as
a fitness function in the GA (to seek for optimal matrices). The latter function
satisfies the definition of a contrast function Ψ(s̃ = Bx) defined in [4].

4 GAs, a Theoretical Background

Let C be the set of all possible creatures in a given world and a function f :
C → R+ be called fitness function. Let Ξ : C → VC a bijection from the creature
space onto the free vector space over A�, where A = {a(i), 0 ≤ i ≤ a − 1}
is the alphabet which can be identified by V1 the free vector space over A.
Then we can establish VC = ⊗�

λ=1V1 and define the free vector space over
populations VP = ⊗N

σ=1VC with dimension L = 	 ·N and aL elements. Finally
let S ⊂ VP be the set of probability distributions over PN, that is the state
which identifies populations with their probability value. A Genetic Algorithm
is a product of stochastic matrices (mutation, selection, crossover, etc..) act by
matrix multiplication from the left:

Gn = Fn ·Ck
Pn

c
·MPn

m
(9)

where Fn is the selection operator, Ck
Pn

c
is the simple crossover operator and

MPn
m

is the local mutation operator (see [3] and [6] for definitions of the canonical
operators)

5 Guided GAs

In order to include statistical information into the algorithm we define an hybrid
statistical genetic operator as follows. The value of the probability to go from
individual pi to qi depends on contrast functions (i.e. based on cumulants) as:
P (ξn+1 = pi|ξn = qi) = 1

ℵ(Tn) exp
(
−Ψ(pi)+Ψ(qi)

Tn

)
; pi, qi ∈ C where ℵ(Tn) is the

normalization constant depending on iteration n; temperature follows a variation
decreasing schedule, that is Tn+1 < Tn converging to zero, and Ψ(qi) is the value
of the selected contrast function over the individual (an encoded separation
matrix). This sampling (simulated annealing law) is applied to the population
and offspring emerging from the canonical genetic procedure.
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Proposition 1. The guiding operator can be described using its associated tran-
sition probability function (t.p.f.) by column stochastic matrices Mn

G, n ∈ N
acting on populations.

1. The components are determined as follows: Let p and q ∈ ℘N , then we have

〈q,Mn
Gp〉 =

N !
z0q!z1q! . . . zaL−1q!

aL−1∏
i=0

{P (i)}ziq; p, q ∈ PN (10)

where ziq is the number of occurrences of individual i on population q and
P (i) is the probability of producing individual i from population p given above.
The value of the guiding probability P (i) = P (i, Ψ) depends on the fitness

function used:1 P (i) =
zip exp

(
−Ψ(pi)+Ψ(qi)

Tn

)
∑aL−1

i=0
zip exp

(
−Ψ(pi)+Ψ(qi)

Tn

)
2. For every permutation π ∈ ΠN , we have πMn

G = Mn
G = Mn

Gπ.
3. Mn

G is an identity map on U in the optimum, that is 〈p,Mn
Gp〉 = 1; and

has strictly positive diagonals since 〈p,Mn
Gp〉 > 0 ∀p ∈ PN.

4. All the coefficients of a GA consisting of the product of stochastic matrices:
the simple crossover Ck

Pc
, the local multiple mutation Mn

Pm and the guiding
operator Mn

G for all n, k ∈ N are uniformly bounded away from 0.

Proof: (1) follows from the transition probability between states. (2) is obvious
and (3) follows from [4] and checking how matrices act on populations. (4) fol-
lows from the fact that Mn

Pm is fully positive acting on any stochastic matrix S.

It can be viewed as a suitable fitness selection and as a certain Reduction Oper-
ator, since it preserves the best individuals into the next generation using a non
heuristic rule, unlike the majority of GAs used.

6 Convergence Analysis of GGAs

A markov chain (MC) modelling a canonical GA (CGA) has been proved to be
strongly ergodic (hence weak ergodic, see [6]). So we have to focus our attention
on the transition probability matrix that emerges when we apply the guiding
operator. The overall transition matrix can be written as:

〈q,Gnp〉 =
∑

v∈℘N

〈q,Mn
Gv〉〈v, Cnp〉 (11)

where Cn is the product of stochastic matrices associated to the CGA and Mn
G

is given by equation 10.

1 The condition that must be satisfied the transition probability matrix P (i, f) is that
it must converge to a positive constant as n → ∞ (since we can always define a suit-
able normalization constant). The fitness function or selection method of individuals
used in it must be injective.
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Proposition 2. Weak Ergodicity
A MC modelling a GGA satisfies weak ergodicity if the t.p.f associated to guiding
operators converges to uniform populations (populations with the same individ-
ual).

Proof: The ergodicity properties depend on the new operator since CGAs satisfy
them as we said before. We just have to check the convergence of the t.p.f. of the
guiding operator on uniform populations. The following condition is satisfied:

〈u,Gnp〉 → 1 u ∈ U (12)

Then we can find a series of numbers:
∑∞

n=1 minn,p(〈u,Gnp〉) =
∞ ≤

∑∞
n=1 minq,p

∑
v∈℘N

min (〈v,Mn
Gp〉〈v, Cnq〉) which is equivalent to weak

ergodicity.

Proposition 3. Strong Ergodicity
Let Mn

Pm
describes multiple local mutation, Ck

Pn
c

describes a model for crossover
and Fn describes the fitness selection. Let (Pn

m, Pn
c )n ∈ N be a variation schedule

and (φn)n∈N a fitness scaling sequence associated to Mn
G describing the guiding

operator according to this scaling. 2 Let Cn = Fn ·Mn
Pm
·Ck

Pn
c

represent the first
n steps of a CGA. In this situation,

v∞ = lim
n→∞

Gnv0 = lim
n→∞

(M∞
GC∞)nv0 (13)

exists and is independent of the choice of v0, the initial probability distribu-
tion. Furthermore, the coefficients 〈v∞, p〉 of the limit probability distribution
are strictly positive for every population p ∈ ℘N .

Proof: This is a consequence of Theorem 16 in [6] and point 4 in Proposition
1. We only have to replace the canonical selection operator Fn with our guiding
selection operator Mn

G which has the same essential properties.

Proposition 4. Convergence to the Optimum
Under the same conditions of propositions 2 and 3 the GGA algorithm converges
to the optimum.

Proof: To reach this result, one has to prove that the probability to go from any
uniform population to the population p∗ containing only the optimum is equal to
1 when n→∞:

lim
n→∞

〈p∗,Gnu〉 = 1 (14)

since the GGA is an strongly ergodic MC, hence any population tends to uniform
in time. If we check this expression we finally have the equation 14. In addition
we use point 3 in Proposition 1 to make sure the optimum is the convergence
point.

2 A scaling sequence φn : (R+)N → (R+)N is a sequence of functions connected
with a injective fitness criterion f as fn(p) = φn(f(p)) p ∈ ℘N such that M∞

G =
limn→∞ Mn

G exists.
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7 Experiments

This section illustrates the validity of the genetic algorithms here proposed and
investigates the accuracy of the method. The Computer used in these simula-
tions was a PC 2 GHz, 256 MB RAN and the software used is an extension
of ICATOOLBOX2.0 in MatLab code, protected by the Spanish law N◦ CA-
235/04. In order to measure the accuracy of the algorithm, we evaluate using
the Mean Square Error (MSE) and Normalized Round MSE (NRMSE) dividing
by standard deviation) and the Crosstalk in decibels (Ct):

MSEi =

N∑
t=1

(si(t)− yi(t))2

N
; Cti = 10 log




N∑
t=1

(si(t)− yi(t))2

N∑
t=1

(si(t))2


 (15)

We propose a two dimensional mixing problem with the input signals plotted
in the Figures 3 and 4. These images are mixed using a linear mixing matrix
A = [0.697194 − 0.313446; 0.408292 0.382734] with cond(A) = 1.67686 and
det(A) = 0.39481. Then we add some noise to mixtures, i.e. (gaussian noise
20dB on 50% pixel points. We compare the results with ERICA algorithm [5]
with regard to number of iterations to reach convergence using the same num-
ber of individuals (N = 6). The GGA uses a guiding operator based on cumu-
lants (see section 3). ERICA evolution is six deterministic trajectories in a 4
dimensional space while GGA is an stochastic process around the best trajec-
tory (see Table 4). Of course in this low dimensional problem (only two sensors)
ERICA is faster unlike in high dimensional scenario where GGA method pre-
vails [3].

8 Conclusions

A GGA-based ICA method has been developed to solve BSS problem from mix-
tures of independent sources. Extensive simulation results proved the potential
of the proposed method [3],[7] but no explanation about convergence was given.
In this paper we introduced demonstrations of the GA-ICA methods used till
now [3],[7], etc. proving the convergence to the optimum unlike the ICA al-
gorithms which usually suffer of local minima and non-convergent cases. Any
injective contrast function can be used to build a guiding operator, as an elitist
strategy.

Finally, in the experimental section, we have checked the potential of the
proposed algorithms versus ERICA algorithm [5]. Experimental results showed
promising results, although in low dimensional scenario deterministic algorithms
prevail. Future research will focus on the adaptation of the algorithm for higher
dimensionality and nonlinearities.
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Fig. 3. Sources, Mixtures, Estimated Sources and CPU time (ERICA vs GGA)
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Fig. 4. Separation features: (Crosstalk and NRMSE vs. iteration (ERICA(red line)
Guided Genetic Algorithm (green line) ; matrix coefficient evolution (a12 vs a22)
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Abstract. In this paper we present an evolutionary algorithm for the
multidimensional 0–1 knapsack problem. Our algorithm incorporates a
heuristic operator which computes problem-specific knowledge. The de-
sign of this operator is based on the general technique used to design
greedy-like heuristics for this problem, that is, the surrogate multipliers
approach of Pirkul (see [7]). The main difference with work previously
done is that our heuristic operator is computed following a genetic strat-
egy -suggested by the greedy solution of the one dimensional knapsack
problem- instead of the commonly used simplex method. Experimental
results show that our evolutionary algorithm is capable of obtaining high
quality solutions for large size problems requiring less amount of compu-
tational effort than other evolutionary strategies supported by heuristics
founded on linear programming calculation of surrogate multipliers.

Keywords: Evolutionary computation, genetic algorithms, knapsack
problem, 0–1 integer programming, combinatorial optimization.

1 Introduction

The multidimensional 0–1 knapsack problem (MKP) is a NP-complete combi-
natorial optimization problem which captures the essence of linear 0–1 integer
programming problems. It can be formulated as follows. We are given a set
of n objects where each object yields pj units of profit and requires aij units
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of resource consumption in the i-th knapsack constraint. The goal is to find a
subset of the objects such that the overall profit is maximized without exceed-
ing the resource capacities of the knapsacks. More precisely, given A = (aij),
p = (p1, . . . , pn), and b = (b1, . . . , bm), an instance of MKP can be described as:

maximize f(x1, . . . , xn) =
n∑

j=1

pjxj (1)

subject to constraint Ci :
n∑

j=1

aijxj ≤ bi i = 1, . . . , m (2)

The MKP is one of the most popular constrained integer programming prob-
lems with a large domain of applications. Many practical problems can be for-
mulated as a MKP instance: the capital budgeting problem in economy; the
allocation of databases and processors in a distributed computer system ([6]) or,
more recently, the problem of the daily management of a remote sensing satel-
lite ([15]). Most of the research on knapsack problems deals with the simpler
one-dimensional case (m = 1). For this single constraint case, the problem is
not strongly NP-hard and some exact algorithms and also very efficient approx-
imation algorithms have been developed for obtaining near-optimal solutions. A
good review of the one-dimensional knapsack problem can be found in ([10]).

In the multidimensional case several exact algorithms that compute differ-
ent upper bounds for the optimal solutions are known. For example that in
([7]). But this method, based on the computation of optimal surrogate multi-
pliers, becomes no applicable for large values of m and n and other strategies
must be introduced. In this context heuristic approaches for the MKP have ap-
peared during the last decades following different ideas: greedy-like assignment
([5], [11]); LP-based search ([1]); surrogate duality information ([11]) are some
examples. Also an important number of papers using genetic algorithms and
other evolutionary strategies have emerged. The genetic approach has shown to
be well suited for solving large MKP instances. In ([9]) a genetic algorithm is
presented where infeasible individuals are allowed to participate in the search
and a simple fitness function with a penalty term is used. Thiel and Voss (see
[14]) presented a hybrid genetic algorithm with a tabu search heuristic. Chu and
Beasley (see [4]) have developed a genetic algorithm that searches only into the
feasible search space. They use a repair operator based on the surrogate multi-
pliers of some suitable surrogate problem. Surrogate multipliers are calculated
using linear programming. A review of exact and heuristic techniques for MKP
can be found in ([4]).

In the present paper we propose an evolutionary strategy for MKP which
takes as starting point the surrogate multipliers approach appeared first in ([11])
and later in ([4]) but using a genetic algorithm for finding an approximation of
some optimal set of weights. In this approach the m-knapsack constraints of
equation 2 are reduced to a single constraint

∑n
j=1(

∑m
i=1 ωiaij)xj ≤

∑m
i=1 ωibi

computing a suitable weight ωi for each restriction i. These weights are called the
surrogate multipliers and the single knapsack constraint is called the surrogate
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constraint. Any optimal solution for the surrogate problem generates an upper
bound for the optimal solution of the initial MKP. Ideally the best surrogate
multipliers are those that generate the smallest upper bound for the solution
of the initial problem. But computing this optimal set of multipliers is a com-
putationally difficult task. The aforementioned genetic strategy to compute an
approximate set of surrogate multipliers is the main novelty in this paper.

To our knowledge, one of the best evolutionary strategies for MKP based on
surrogate constraints is CHUGA algorithm (see [4]). Our experimental results
show that our heuristic based upon genetic algorithm is competitive -respect to
the quality of the generated solutions- with CHUGA but requiring less amount
of computational effort. The rest of the paper is organized as follows. Section
2 deals with the surrogate problem associated to an instance of the MKP and
describes the mathematical background needed to justify the election of the
fitness function of our genetic algorithm to approximate the optimal surrogate
multipliers. In section 3 we present our evolutionary algorithm for solving the
MKP that incorporates as heuristic operator the genetic procedure developed
in section 2. In section 4 experimental results of our evolutionary algorithm
and comparisons with that of Chu and Beasley ([4]) over problems taken from
the OR-Library ([3]) are included. Finally, section 5 contains some conclusive
remarks.

2 The MKP and the Surrogate Multipliers

This section resumes the mathematical background and the detailed formulation
of our genetic heuristic for computing surrogate multipliers.

Definition 1. An instance of the MKP is a 5-tuple:

K = (n,m, p,A, b) (3)

where n, m ∈ IN are both natural numbers representing (respectively) the number
of objects and the number of constraints; p ∈ (IR+)n is a vector of positive real
numbers representing the profits; A ∈ Mm×n(IR+ ∪ {0}) is m × n-matrix of
non-negative real numbers corresponding to the resource consumptions and b ∈
(IR+)m is a vector of positive real numbers representing the knapsack capacities.

Remark 2. Given an instance of the MKP K = (n,m, p,A, b) the objective is

maximize f(x) = p · x′ (4)

subject to A · x′ ≤ b
′

(5)

where x = (x1, . . . , xn) is a vector of variables that takes values in {0, 1}n.
Notation v′ stands for the transposition of the vector v.



66 C.L. Alonso, F. Caro, and J.L. Montaña

Definition 3. Let K = (n,m, p,A, b) be an instance of the MKP. A bit-vector
α ∈ {0, 1}n is a feasible solution of instance K if it verifies the constraint given
by equation 5. A bit-vector αopt

K ∈ {0, 1}n is a solution of instance K if it is a
feasible solution and for all feasible solution α ∈ {0, 1}n of instance K it holds

f(α) ≤ f(αopt
K ) =

n∑
j=1

pjα
opt
K [j] (6)

Here α[j] stands for the value of variable xj.

Remark 4. We say that an instance K = (n,m, p,A, b) of MKP is well stated if
it satisfies

aij ≤ bi <

n∑
j=1

aij ∀i = 1, . . . , m; j = 1, . . . , n (7)

Well stated MKP instances can always be assumed since otherwise some or all
of the variables could be fixed to 0 or 1.

Remark 5. (LP-relaxation) Along this section we shall deal with a relaxed ver-
sion of the MKP where the vector of variables x can take values in the whole
interval [0, 1]n. We will refer to this case as the LP-relaxed MKP. An instance
of the LP-relaxed MKP will be denoted by KLP . A solution of some instance
KLP of the LP-relaxed MKP will be denoted by αopt

KLP .

Definition 6. Let K = (n,m, p,A, b) be an instance of MKP and let ω ∈ (IR+)m

be a vector of positive real numbers. The surrogate constraint for K associated
to ω, denoted by Sc(K,ω), is defined as follows.

n∑
j=1

(
m∑

i=1

ωiaij)xj ≤
m∑

i=1

ωibi (8)

The vector ω = (ω1, . . . , ωm) is called the vector of surrogate multipliers.
The surrogate instance for K, denoted by SR(K,ω), is defined as the 0–1 one-
dimensional knapsack problem given by:

SR(K,ω) = (n, 1, p, ω ·A,ω · b) (9)

Remark 7. Given a surrogate instance SR(K,ω) the surrogate problem is

maximize f(x) = p · x′ (10)

subject to Sc(K,ω)

where x = (x1, . . . , xn) takes values in {0, 1}n

We shall denote by αopt
SR(K,ω) the solution of the surrogate instance SR(K,ω).
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The key result concerning solutions of surrogate problems is stated in the next
lemma. The proof of this useful fact is an easy consequence of the definition of
the surrogate problem (see [7]).

Lemma 8. Let K = (n,m, p,A, b) be any instance of MKP and ω = (ω1, . . . , ωm)
any vector of surrogate multipliers. Then

f(αopt
SR(K,ω)) ≥ f(αopt

K ) (11)

Remark 9. The best possible upper bound for f(αopt
K ) using lemma 8 is com-

puted by finding the minimum value min{f(αopt
SR(K,ω)) : ω ∈ (IR+)m}. We shall

call optimal any vector of surrogate multipliers that provides the above mini-
mum. Following Gavish and Pirkul ([7]) we point out that, from this optimal set
of surrogate multipliers, the generated upper bound on f(αopt

K ) is less than or
equal to bounds generated by LP-relaxation. Unfortunately , in terms of time
complexity, computing the optimal surrogate multipliers is a computationally
hard problem ([7]). Next proposition motivates our genetic strategy to approxi-
mate the optimal values of the surrogate multipliers ω.

Proposition 10. Let K = (n,m, p,A, b) be any instance of MKP. Then the
following inequalities are satisfied.

min{f(αopt
SR(K,ω)LP ) : ω ∈ (0, 1]m} = min{f(αopt

SR(K,ω)LP ) : ω ∈ (IR+)m} (12)

min{f(αopt
SR(K,ω)LP ) : ω ∈ (0, 1]m} ≥ f(αopt

K ), (13)

Here αopt
SR(K,ω)LP denotes the solution of the relaxed surrogate problem SR(K, ω)LP.

Proof. First note that, although ω has been defined in (IR+)m, we can normalize
the constraint 8 assuming without lost of generality that each ωi belongs to
(0, 1]. This justifies equality 12. By definition of LP-relaxed problem (see remark
5 above) any instance I of MKP satisfies

f(αopt
ILP ) ≥ f(αopt

I ), (14)

Previous inequality holds, in particular, if instance I is a surrogate instance, that
is I := SR(K,ω). This immediately gives:

∀ω ∈ (0, 1]m, f(αopt
SR(K,ω)LP ) ≥ f(αopt

SR(K,ω)) (15)

Now the result follows from inequality 11 in lemma 8.

2.1 A Genetic Algorithm for Computing the Surrogate Multipliers

We propose a simple genetic algorithm (GA) to obtain approximate values for
ω. In this GA the individuals will be binary 0–1 strings, representing ω =
(ω1, . . . , ωm). Each ωi will be represented as a q-bit binary substring, where
q determines the desired precision of ωi ∈ (0, 1].
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Definition 11. Given an MKP instance K = (n,m, p,A, b), q ∈ IN, and a
representation γ ∈ {0, 1}qm of a candidate vector of surrogate multipliers ω =
(ω1, . . . , ωm) the fitness value of γ is defined as follows:

fitness(γ) = f(αopt
SR(K,ω)LP ) =

n∑
j=1

pjα
opt
SR(K,ω)LP [j] (16)

Remark 12. (Computing the fitness) The solution αopt
SR(K,ω)LP is obtained by

means of the well known greedy procedure for one-dimensional instances of the
knapsack problem that we describe next. Let I = (n, 1, p, a, b) be any instance of
the LP relaxed one-dimensional knapsack problem. Assume that the items are
sorted according to non-increasing efficiencies: uj = pj/aj , j = 1, . . . , n. Define
s = min{k ∈ {1, . . . , n}:

∑k
j=1 aj > b}, which is usually known as the split term.

Then, the solution αopt
ILP is given by:

αopt
ILP [j] = 1 for 1 ≤ j ≤ s− 1; αopt

ILP [j] = 0 for s + 1 ≤ j ≤ n; (17)

αopt
ILP [s] =

(b−
∑s−1

j=1 aj)
as

(18)

The split term s and also the solution αopt
ILP can be found in optimal O(n)

time using the median search algorithm in [2]. Finally, given an instance of
MKP K = (n,m, p,A, b), q ∈ IN, and a representation γ ∈ {0, 1}qm of an in-
dividual ω = (ω1, . . . , ωm), set I := SR(K,ω)LP and apply the previous proce-
dure to compute αopt

SR(K,ω)LP and then the value fittness(γ) according to equa-
tion 16.

Note that, according to proposition 10, the objective of our GA is to minimize
the fitness function defined by equation 16. The remainder of the parameters
of our genetic algorithm have been chosen as follows: the roulette wheel rule
as selection procedure, uniform crossover as recombination operator and bitwise
mutation according to a given probability pm (see [8] for a detailed description
of these operators).

3 An Evolutionary Algorithm for the MKP

Given an instance of MKP, K = (n,m, p,A, b), and a set of surrogate multipliers,
ω, computed by the genetic algorithm described in the previous section, we
will run an steady state evolutionary algorithm for solving K with a repair
operator for the infeasible individuals -that uses as heuristic operator the set of
surrogate multipliers- and also a local improvement technique. The management
of infeasible individuals and their improve will be done following ([4]).
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3.1 Individual Representation and Fitness Function

We choose the standard 0–1 binary representation since it represents the un-
derlying 0–1 integer values. A chromosome α representing a candidate solution
for K = (n,m, p,A, b) is an n-bit binary string. A value α[j] = 0 or 1 in the
j-bit means that variable xj = 0 or 1 in the represented solution. The fitness of
chromosome α ∈ {0, 1}n is defined by

f(α) =
n∑

j=1

pjα[i] (19)

3.2 Repair Operator and Local Improve Procedure

The repair operator lies on the notion of utility ratios. Let K = (n,m, p,A, b) be
an instance of MKP and let ω ∈ (0, 1]m a vector of surrogate multipliers. The
utility ratio for the variable xj is defined by uj = pj∑m

i=1
ωiaij

. Given an infeasible

individual α ∈ {0, 1}n we apply the following procedure to repair it.

Procedure DROP
input: K = (n,m, p,A, b); ω ∈ (0, 1]m and a chromosome α ∈ {0, 1}n

begin
for j=1 to n compute u_j
P:=permutation of (1,...,n) with u_P[j] <= u_P[j+1]
for j=1 to n do

if (alpha[P[j]]=1 and infeasible(alpha)) then
alpha[P[j]]:=0

end

Once we have transformed α into a feasible individual α′, a second phase
is applied in order to improve α′. This second phase is denominated the ADD
phase.

Procedure ADD
input: a chromosome α ∈ {0, 1}n

begin
P:=permutation of (1,...,n) with u_P[j] >= u_P[j+1]
for j=1 to n do

if alpha[P[j]]=0 then alpha[P[j]]:=1
if infeasible(alpha) then alpha[P[j]]:=0

end

3.3 Genetic Operators and Initial Population

We use the roulette wheel rule as selection procedure, the uniform crossover as
replacement operator and bitwise mutation with a given probability p. So when
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mutation must be applied to an individual α, a bit j from α is randomly selected
and flipped from its value α[j] ∈ {0, 1} to 1− α[j].

We construct the individuals of the initial population generating random
permutations from (1, . . . , n) and applying the DROP procedure to get feasibil-
ity. Then we apply to these permutations the ADD procedure to improve their
fitness.

4 Experimental Results

We have executed our evolutionary algorithm on the problems included in the
OR-Library proposed in [4] 1. This library contains randomly generated instances
of MKP with number of constraints m ∈ {5, 10, 30}, number of variables n ∈
{100, 250, 500} and tightness ratios r ∈ {0.25, 0.5, 0.75}. The tightness ratio r
fixes the capacity of i-th knapsack to r

∑n
j=1 aij , 1 ≤ i ≤ m. There are 10

instances for each combination of m, n and r giving a total of 270 test problems.
We have run our double genetic algorithm (DGA) setting the parameters to the
following values. The GA computing the surrogate multipliers uses population
size 75, precision q = 10, probability of mutation 0.1 and 15000 generations to
finish. The steady state GA solving the MKP instances uses population size 100,
probability of mutation equal to 0.1 and 106 non-duplicate evaluations to finish.
Since the optimal solution values for most of these problems are unknown the
quality of a solution α is measured by the percentage gap of its fitness value with
respect to the fitness value of the optimal solution of the LP-relaxed problem:

%gap = 100
f(αopt

KLP
)−f(α)

f(αopt

KLP
)

. We measure the computational time complexity by

means of the number of evaluations required to find the best obtained solution.
We have executed our evolutionary algorithm on a Pentium IV; 3GHz. Over this
platform the execution time for a single run of our DGA ranges from 3 minutes,
for the simplest problems, to 25 minutes, for the most complex ones.

Experimentation has been very extensive but due to lack of space reasons we
only report on comparisons with other well known algorithms. The results of our
experiments are displayed in Tables 1 and 2 based on 10 independent executions
for each instance. In table 1, our algorithm is compared with that of Chu et.
al (CHUGA) ([4]). To our knowledge this is the best known genetic algorithm
for MKP based on surrogate constraints. The first two columns identify the
30 instances that corresponds to each combination of m, n. In the remainder
columns we show for the two compared algorithms the average %gap and the
average number of evaluations required until the best individual was encountered
(A.E.B.S). We have taken the values corresponding to CHUGA from ([4]) and
([12]). As the authors have pointed out in their work these results are based on
only one run for each problem instance whereas in the case of our double genetic
algorithm DGA, 10 runs were executed. In table 2 we display results that measure
the quality of our surrogate multipliers. From this table we conclude that in all

1 Public available on line in http://www.brunel.ac.uk/depts/ma/research/jeb/info.html
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Table 1. Computational results for CHUGA and DGA. Values for DGA are based on
10 runs for each instance. We also include the average % speed-up of DGA with respect
to CHUGA, attending on the respective A.E.B.S

Problem GHUGA DGA

m n A. %gap A.E.B.S A. %gap A.E.B.S A. %Speed-up

5 100 0.59 24136 0.58 58045 –
5 250 0.16 218304 0.15 140902 35.46
5 500 0.05 491573 0.06 185606 62.24
10 100 0.94 318764 0.98 70765 77.80
10 250 0.35 475643 0.32 153475 67.73
10 500 0.14 645250 0.15 179047 72.25
30 100 1.74 197855 1.71 106542 46.15
30 250 0.73 369894 0.71 184446 50.14
30 500 0.40 587472 0.44 233452 60.26

Table 2. Average percentage gap of f(αopt

SR(K,ω)LP ) for the obtained surrogate mul-

tipliers ω, with respect to the value of the optimal solution of the LP-relaxed MKP
instance (αopt

KLP )

Problem DGA

m n A. %gap

5 100 0.003
5 250 0.000
5 500 0.000
10 100 0.03
10 250 0.009
10 500 0.004
30 100 0.33
30 250 0.11
30 500 0.05

tested cases they are almost optimal respect to their best possible lower bound.
From our experimentation we deduce that our DGA performs as well as the
CHUGA algorithm in terms of the average %gaps but using less amount of
computational effort because the best solution is reached within a considerably
less number of individual evaluations in almost all tested cases: last column in
table 1 shows the the average % speed-up obtained by DGA respect to CHUGA
algorithm.

5 Conclusive Remarks

In this paper we have presented a heuristic algorithm based on GAs for solving
multidimensional knapsack problems (DGA). The core component of DGA is
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that used in a standard GA for MKP. Our approach differs from previous GA
based techniques in the way that a heuristic is calculated incorporating another
genetic algorithm. On a large set of randomly generated problems, we have shown
that the GA heuristic is capable of obtaining high-quality solutions for problems
of various characteristics, whilst requiring less amount of computational effort
than other GA techniques based on linear programming heuristics. Clearly, the
effectiveness of the greedy heuristics based on the surrogate problem strongly de-
pends on the ability of the surrogate constraint to grasp the aggregate weighted
consumption level of resources for each variable, and this in turn relies on the
determination of a good set of weights. In this sense, for the large-sized test data
used, this new DGA converged most of the time much faster to high quality
solutions than the comparable GA from Chu et al. and this feature can only be
explained by the better quality of the surrogate multipliers obtained using our
heuristic method. In particular this supports the conjecture that genetic com-
putation is also well suited when tackling optimization problems of parameters
with variables in continuous domains as it is the case of computing surrogate
multipliers.
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Abstract. In the sequel we shall consider the fuzzy job-shop problem,
a variation of the job-shop problem where the duration of tasks may
be uncertain and where due-date constraints are flexible. Our aim is to
provide a semantics for this problem and fix some criteria to analyse
solutions obtained by Evolutionary Algorithms.

1 Introduction

In the last decades, scheduling problems have been subject to intensive research
due to their multiple applications in areas of industry, finance and science [1].
More recently, fuzzy scheduling problems have tried to model the uncertainty and
vagueness pervading real-life situations [2]. Scheduling problems are highly com-
plex and practical approaches to solving them usually involve heuristic strategies.
In particular, genetic algorithms have proved to be a powerful tool for solving
scheduling problems, due to their ability to cope with huge search spaces involved
in optimizing schedules [3]. This motivates our description of a fuzzy job-shop
problem and the proposal of a genetic algorithm in order to solve it.

2 Description of the Problem

The job shop scheduling problem, also denoted JSSP, consists in scheduling a set
of jobs {J1, . . . , Jn} on a set of physical resources or machines {M1, . . . , Mm},
subject to a set of constraints. Each job Ji, i = 1, . . . , n, consists of m tasks
{θi1, . . . , θim} to be sequentially scheduled. Also, each task θij requires the un-
interrupted and exclusive use of one of the machines for its whole processing
time, duij . Finally, we suppose that for each job there is a minimum starting
time and a maximum finishing time, so that all its tasks must be scheduled
within this time interval. Hence, there are three types of constraints: precedence
constraints, capacity constraints and release and due-date constraints. The goal
is twofold: we need to find a feasible schedule, so that all constraints hold and,
at the same time, we want this schedule to be optimal, in the sense that its
makespan (i.e., the time it takes to finish all jobs) is minimal.
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In real-life applications, it is often the case that the exact duration of a task is
not known a priori. For instance, in ship-building processes, some tasks related to
piece cutting and welding are performed by a worker and, depending on his/her
level of expertise, the task will take a different time to be processed. Here, it is
impossible to know a priori the exact duration of this task, even if an expert is
able to estimate, for instance, the minimum time needed to process the task, the
most likely processing time or an upper bound for the processing time. Clearly,
classical job shop problems, are not adequate to deal with this type of situations.
Instead, it is necessary to somehow model uncertain processing times and thus
take advantage of the expert’s knowledge.

In the last years, fuzzy sets have become a very popular tool to model uncer-
tainty. Indeed, it is possible to find many examples in the literature where fuzzy
sets are used to represent uncertain processing times (cf. [2]). In particular, we
propose to represent each task’s processing time by a triangular fuzzy number or
TFN. For such a fuzzy set, the membership function takes a triangular shape,
completely determined by three real numbers, a1 ≤ a2 ≤ a3, as follows:

µA(x) =




0 : x < a1

x−a1

a2−a1 : a1 ≤ x ≤ a2

x−a3

a2−a3 : a2 < x ≤ a3

0 : a3 < x

(1)

Every TFN A may be identified with the tuple formed by the three numbers
a1, a2, a3, using the notation A = (a1, a2, a3). Imprecise durations modelled using
TFNs have a clear interpretation. a1 can be interpreted as the shortest possible
duration, a2 as the most likely duration and a3 as the longest possible duration.
In the case that the exact duration of a task is known a priori and no uncertainty
is present, the TFN model is still valid. The reason is that any real number r ∈ R
can be seen as a special case of TFN R = (r, r, r), with full membership at r and
null membership anywhere else.

Once a task’s starting time is known, its completion time will be calculated
by adding the task’s processing time to the given starting time. This can be
done using fuzzy number addition, which in the case of TFNs A = (a1, a2, a3)
and B = (b1, b2, b3) is reduced to adding three pairs of real numbers as follows:

A + B = (a1 + b1, a2 + b2, a3 + b3) (2)

A consequence of this operation is that completion times are TFNs as well.
Notice that this definition is coherent with traditional real-number addition.

Another situation where the need of fuzzy number arithmetic arises is when
the starting time for a given task θ must be found. Here, it is necessary to find
the maximum between two TFNs, the completion time of the task preceding θ
in its job J and that preceding θ in its resource M . Now, given two TFNs A =
(a1, a2, a3) and B = (b1, b2, b3), the maximum A∨B is obtained by extending the
lattice operation max on real numbers using the Extension Principle. However,
the resulting membership function might be quite complex to compute. Also, the
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result of such an operation, while still being a fuzzy number, is not guaranteed
to be a TFN. For these reasons, we approximate A ∨ B by a TFN, A � B, as
follows:

A ∨B ≈ A �B = (a1 ∨ b1, a2 ∨ b2, a3 ∨ b3) (3)

Notice that in some cases the approximation � coincides with the maximum ∨.
Even if this is not the case, the support of both fuzzy sets A ∨ B and A � B is
always equal and the unique point x with full membership in A�B also has full
membership in A ∨ B. Finally, notice that � is coherent with the maximum of
two real numbers.

Using the addition and the maximum �, it is possible to find the comple-
tion time for each job. The fuzzy makespan Cmax would then correspond to
the greatest of these TFNs. Unfortunately, the maximum ∨ and its approxima-
tion � cannot be used to find such TFN, because they do not define a total
ordering in the set of TFNs. Instead, it is necessary to use a method for fuzzy
number ranking [4]. The chosen method consists in obtaining three real numbers
C1(A), C2(A), C3(A) from each TFN A and then use real number comparisons.
These three numbers are defined as follows:

C1(A) =
a1 + 2a2 + a3

4
, C2(A) = a2, C3(A) = a3 − a1 (4)

They can be used to rank a set of n ≥ 1 TFNs according to Algorithm 1. This

1: order the TFNs according to the value of C1

2: if there are TFNs with identical value of C1 then
3: order these TFNs using the real value C2

4: if there are TFNs with identical value of C1 and C2 then
5: rank them using C3

Algorithm 1. Ranking Method for TFNs

process establishes a total ordering in any set A1, . . . , An of TFNs and, in the
particular case of real numbers, yields exactly the same total ordering as the
classical maximum for real numbers.

In practice, due-date constraints are often flexible. For instance, a customer
may have a preferred delivery date d1, but some delay will be allowed until a
later date d2, after which the order will be cancelled. Similarly, an early due-date
d1 exists, after which business profit starts to decline until a later date d2, after
which losses begin. We would then be completely satisfied if the job finishes
before d1 and after this time our level of satisfaction would decrease, until the
job surpasses the later date d2, after which date we will be clearly dissatisfied.
The satisfaction of a due-date constraint becomes a matter of degree, our degree
of satisfaction that a job is finished on a certain date. A common approach to
modelling such satisfaction levels is to use a fuzzy set D with linear decreasing
membership function:
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µD(x) =




1 : x ≤ d1

x−d2

d1−d2 : d1 < x ≤ d2

0 : d2 < x

(5)

According to Dubois et alt. [2], such membership function expresses a flexible
threshold “less than” and expresses the satisfaction level sat(t) = µD(t) for the
ending date t of the job. However, when dealing with uncertain task durations,
the job’s completion time is no longer a real number t, but a TFN C. In this case,
Sakawa and Kubota [5] propose to measure the degree to which a completion
time C satisfies the due-date constraint D using the following agreement index :

AI(C,D) =
area(D ∩ C)

area(C)
(6)

Notice the similarity of this definition to that of degree of subsethood for discrete
fuzzy sets.

Once we have established a means of modelling uncertain duration times and
flexible due-dates, we can find a schedule for a given problem. For every job
Ji, i = 1, . . . , n, we may decide to what degree its completion time Ci satisfies
the flexible due-date Di, as given by AIi = AIi(Ci, Di) and we may use these
completion times to obtain a fuzzy makespan, Cmax. Now, we need to decide on
the quality of this schedule, based on its feasibility and makespan.

To decide on the feasibility of the given schedule, we simply combine the sat-
isfaction degrees AIi, i = 1, . . . , n. We may use the average aggregation operator,
so the degree to which a schedule is feasible is given by:

z1 =
1
n

n∑
i=1

AIi (7)

A more restrictive approach is to combine the satisfaction degrees using the
minimum aggregation operator as follows:

z2 = AImin = min
i=1..n

AIi (8)

The value of z1 can be seen as the probability Pr(F ) of the fuzzy event F :“the
schedule is feasible” over the finite domain of jobs D = {J1, . . . , Jn}, provided
that the membership of job Ji in F is µF (Ji) = AIi, i = 1, . . . , n. Similarly,
z2 corresponds to the necessity measure N(F ) of the fuzzy event F over the
finite domain D. Both z1 ∈ [0, 1] and z2 ∈ [0, 1] measure the schedule’s degree
of feasibility, that is, the degree to which due-date constraints are satisfied.
Obviously, the bigger this degree of feasibility, the better the schedule, so our
goal should be to maximise these degrees z1 and z2.

Regarding the makespan Cmax, the “smaller” it is, the better the schedule.
Now, because Cmax is a TFN, it is not totally clear what is meant by “smaller”.
If we consider the total ordering defined by the ranking method, it would mean
a smaller C1(Cmax) and our goal should be to minimise:

z3 = C1(Cmax) (9)
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Overall, we aim at maximising z1 and z2 (maximise feasibility) and, simult-
aneously, minimising z3 (minimise makespan). Hence, given a set of possible
schedules S, we need to decide which schedule s ∈ S satisfies the following
goals: G1, maximise z1; G2, maximise z2; and G3, minimise z3. If we consider
this problem in the framework of fuzzy decision making, according to the model
proposed by Bellman and Zadeh [6], the degree to which a given schedule s ∈
S satisfies the three goals G1, G2, G3 is given by min (µG1(s), µG2(s), µG3(s)),
where µGi

represents the degree to which s satisfies goal Gi, i = 1, 2, 3. Obviously,
our aim is to find a schedule s ∈ S maximising this satisfaction degree µD(s).

For the problem to be well-posed, the satisfaction degrees µGi
must be de-

fined. For the first two goals G1 and G2 the satisfaction degree µGi
(s) should

be given by µi(zi) where µi : [0, 1] → [0, 1] is an increasing function such that
µi(0) = 0, µi(1) = 1, i = 1, 2. For the third goal G3 the satisfaction degree
µG3(s) is given by µ3(z3), where µ3 : [0,∞] → [0, 1] is some decreasing func-
tion. Clearly, their exact definition should be dependent on the nature of the
scheduling problem and should ideally be elicited by an expert. In practice, such
an expert might not be available; in this case, we propose to use simple linear
functions of the form:

µi(zi) =




0 : zi ≤ z0
i ,

zi−z0
i

z1
i −z0

i
: z0

i < zi < z1
i ,

1 : zi ≥ z1
i

µ3(z3) =




1 : z3 ≤ z0
3 ,

z3−z0
3

z1
3−z0

3
: z0

3 < z3 < z1
3 ,

0 : z3 ≥ z1
3

(10)

where i = 1, 2 and the adequate values of z0
j , z1

j , j = 1, 2, 3 are determined in
the experimentation process. The objective function for the FJSSP will then be
given by:

f(s) = min{µ1(z1), µ2(z2), µ3(z3)} (11)

where s is a possible schedule, and the solution to the FJSSP will be a schedule
maximising the value of such objective function.

In summary, the Fuzzy Job Shop Scheduling Problem or FJSSP consists in
maximising the objective function f subject to precedence and capacity con-
straints.

3 Using Genetic Algorithms to Solve FJSSP

In classical JSSP, the search for an optimal schedule is usually limited to the
space of active schedules. The best-known algorithm to find active schedules
is the G&T Algorithm [7], which allows to use complementary techniques to
reduce the search space [8]. A possible extension of this algorithm for the FJSSP
is proposed in Algorithm 2. Also, based on this algorithm and inspired in the
work of Sakawa and Kubota [5], we propose a GA to solve the FJSSP.

In the proposed GA, chromosomes are a direct codification of schedules. If
there are n jobs and m machines, each individual will be represented by a n×m
matrix, where element (i, j) represents the completion time for the task in job
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1: A = {θi1, i = 1, . . . , n}; /*first task of each job*/
2: while A �= ∅ do
3: Find the task θ′ ∈ A with minimum earliest completion time /*CT (θ)1*/;
4: Let M ′ be the machine required by θ′ and B the subset of tasks in A requiring

machine M ′;
5: Delete from B any task that cannot overlap with θ′; /*ST (θ)1 > CT (θ′)3*/
6: Select θ� ∈ B according to some criteria to be scheduled;
7: Remove θ� from A and insert in A the task following θ� in the job if θ� is not

the last task of its job;

Algorithm 2. Fuzzy G&T

Ji requiring resource Mj . Each row then represents the schedule of a job’s tasks
over the corresponding resources.

Each chromosome in the initial population for the GA can be generated with
fuzzy G&T algorithm, choosing a task at random from the Conflict Set B. To
prevent premature convergence, it is advisable that the initial population be
diverse enough. For this reason, a new individual will only be incorporated to
the population if its similarity to the other members of the population is less than
a given threshold σ, where similarity is measured using phenotype distance. For a
given individual I, the similarity between two individuals I1 and I2 is defined as:

Sim(Ii, I2) =

∑n
i=1

∑m
j=1 |PrI1(θij) ∩ PrI2(θij)|+ |SuI1(θij) ∩ SuI2(θij)|

n ·m · (m− 1)
(12)

where PrI(θ) is the set of tasks preceding θ in its machine according to the
ordering induced by individual I and SuI(θ) is the set of tasks following θ in its
machine. Clearly, this method can become computationally very expensive for
large populations. A possible solution to this problem is to divide the population
into N sub-populations of a reasonable size and ensure diversity within each sub-
population.

The value of the fitness function for a chromosome is simply the value of the
objective function for the corresponding schedule, as given by (11).

The crossover operator consists in performing the fuzzy G&T algorithm and
solving non-determinism situation using the information provided by the parents.
Every time the conflict set B has more than one task, the criterion followed to
select one of them is to choose that task with earliest completion time in the
parents, according the ranking algorithm. The mutation operator is embedded
in the crossover operator, so that, with a given probability pm, the task from
the conflict set is selected at random.

The general scheme of the GA is designed to avoid premature convergence
to local optima by using a niche-based system. Thus, the population is initially
divided in N sub-populations, containing K individuals each. Each initial sub-
population is generated ensuring enough diversity by means of similarity. These
N sub-populations evolve separately, until a certain convergence is obtained. At
this stage, these sub-populations are merged into a single population of NK
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1: Generate initial population divided in N groups P1, . . . , PN containing K individ-
uals each;

2: while terminating condition T1 is not satisfied do
3: for i = 1; i ≤ N ; i + + do
4: repeat
5: obtain 3 children by crossover and mutation in Pi;
6: select the best of 3 children and the best of remaining children and parents

for the new population NPi;
7: until a new population NPi is complete
8: Replace the worst individual in NPi with the best of Pi.
9: Join P1, . . . , PN into a single population P ;

10: while Terminating condition T2 is not satisfied do
11: Obtain a new population from P following the scheme above;

Algorithm 3. Genetic Algorithm for FJSSP

individuals, which will again evolve until some terminating condition holds. A
pseudo-code description of the resulting GA can be seen in Algorithm 3.

4 Experimental Results

The results shown correspond to the benchmark problems from [5], three prob-
lems of size 6× 6 and three problems of size 10× 10. For each problem, we are
given the duration of each task as a TFN, Du = (t1, t2, t3), and the flexible
due-date for each job, D = (d1, d2). Notice that the problem definitions are not
complete, as no objective function is given in each case.

We shall now provide some semantics for FJSSP and its solutions. This will
help us to find some criteria to analyse the quality of solutions and a heuristic
method to fully determine the objective function in the absence of an expert.
The underlying concept is that solutions to the FJSSP are a-priori solutions,
found when the duration of tasks is not exactly known. It is then hard to know
which schedule will be optimal, because it depends on the realisation of the
task’s durations, which is not known. Each schedule provides an ordering of
tasks and, it is not until tasks are executed according to this ordering that we
know their real duration and, hence, obtain a crisp schedule, the a-posteriori
solution. Similar ideas, in a somewhat different framework, are proposed in [9].

For any experimental analysis of the problem to be performed, the objective
function, i.e. µi, i = 1, 2, 3, must be completely defined. This means that the
exact values of z0

i , z1
i , i = 1, 2, 3 must be known. Hence, we need a methodol-

ogy to automatically define these values in the absence of an expert who elicits
them. According to the proposed semantics, the optimality of a solution to the
FJSSP lies in the ordering of tasks it provides a priori, when the information
about the problem is incomplete. This ordering should yield good schedules
when put in practice and tasks have exact durations. For this reason, for a given
FJSSP we shall generate a set of N crisp JSSP, which can be interpreted as
realisations of the fuzzy problem. Random durations for each task are generated
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according to a probability distribution which is coherent with the fuzzy dura-
tions (namely, the TFNs membership functions normalised so that the additivity
axiom holds). Crisp due-date restrictions are given by the latest possible date
d2. In addition to these N problems, we also consider three limit problems those
where each task has its minimum possible, most likely and maximum possible
duration.

The quality of a fuzzy solution should be measured based on feasibility and
makespan for these crisp problems. In particular, we define two measures for a
given crisp problem: the Feasibility Error, FE, as the proportion of due-date
restrictions that do not hold for the given ordering, and the Relative Makespan
Error, RME, as the makespan error with respect to a solution obtained with
the Branch & Bound Method [1]. It should be noticed that the implementa-
tion used [10], does not take into account due-date restrictions, so the obtained
makespan value is a lower bound for the makespan, but may not correspond to
a feasible solution.

We then try different values of z0
i , z1

i , i = 1, 2, 3 and for each of the resulting
objective functions we run the fuzzy GA M times. Each of the M executions
provides an ordering of tasks ordk, k = 1, . . . , M . Given an ordering ordk, for
each crisp problem JSSPl, l = 1, . . . , N we apply an algorithm of semiactive
schedule building and obtain the values of FE and RME. We may now calculate
the average value of RME, Ē, and the average value of FE, F̄ , across the M
executions and the N crisp problems. The optimal configuration would be that
which simultaneously minimises the average relative makespan error Ē and the
average feasibility error F̄ . However, it is not usually the case that a configuration
exists complying with both criteria. A compromise solution is to take as optimal
the configuration that minimises max(Ē, F̄ ).

Interestingly, from experiments with all six problems, the best configuration
achieved is z0

1 = 0.3, z1
1 = 0.8, z0

2 = 0, z1
2 = 0.3. Notice that this is semanti-

cally sound, because z2 is more restrictive than z1. The values for z0
3 and z1

3

correspond to the lower bound obtained by Branch&Bound for the limit JSSP
with maximum task durations, t3, and the maximum of the due-date upper
bounds maxi=1,...,n d1

i respectively. Furthermore, even in the case where these
values do not provide the optimal solutions, the difference in terms of Ē and
F̄ is very small. We may conclude that a heuristic method to automatically de-
termine the objective function from the task durations and due-dates is to set
z0

i , z1
i , i = 1, 2, 3 as above.

Once the objective function is defined, let us analyse the performance of the
proposed GA, both in terms of the fitness value of a solution and its meaning as
a a-priori solution. In Table 1 we present the results obtained with the proposed
GA (labelled as FGA). We also present the fitness values obtained in [5] (denoted
by S ) for the sake of completeness, even if such value is only meaningful when
the definition of the satisfaction levels µi, i = 1, 2, 3 is known.

The average fitness value and its variance across several executions of the
GA in Table 1 suggest that this algorithm converges adequately, with an av-
erage fitness value in all executions has a value which is close to 1. This is
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Table 1. Results for 20 executions of the GA, with population size N = 100 for
6 × 6 and N = 200 for 10 × 10; similarity threshold σ = 0.8, number of generations
with niche-evolution Imin = 50 for 6 × 6, Imin = 100 for 10 × 10; total number of
generations Imax = 100 for 6×6, Imax = 200 for 10×10, crossover probability pc = 0.9
and mutation probability pm = 0.03. NB stands for the number of trials with best
result. Errors have been estimated using 50 crisp problems. Average execution time on
a Pentium 4 at 3Ghz is 9 seconds (0.88 to generate the initial population) for 6 × 6
and 97 seconds (27 to generate the initial population) for 10 × 10

Problem Ver. NB Best Avg. Worst Var. %F̄ %Ē

6x6-1 S. 18 0.775 0.761 0.628 0.002
FGA 20 1 1 1 0 9.7 20

6x6-2 S. 19 0.792 0.779 0.542 0.003
FGA 20 1 1 1 0 1.7 13.6

6x6-3 S. 20 0.580 0.580 0.580 0
FGA 20 1 1 1 0 3.1 9.5

10x10-1 S. 1 0.714 0.574 0.439 0.009
FGA 9 1 0.964 0.832 0.002 17 18.74

10x10-2 S. 8 0.818 0.722 0.545 0.008
FGA 20 1 1 1 0 10.72 19.92

10x10-3 S. 1 0.560 0.525 0.475 0.003
FGA 1 0.989 0.815 0.597 0.007 19.92 25.85
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Fig. 1. Evolution of the average value of µi, i = 1, 2, 3 in problem 10 × 10 − 3 for the
configuration minimising max(Ē, F̄ ) on a random sample of 50 crisp problems

further confirmed by running a t-test on problems 10× 10− 1 and 10× 10− 3.
The obtained p-value indicates that the fitness value does not converge to a
value lower than 0.97 and 0.81 respectively. Figure 1 further illustrates, as ex-
ample, the convergence of the GA for problem 10 × 10 − 3. The fitness value
decreases when niches are merged, but few generations are needed to recover
previous fitness values, with a bigger slope in the evolution curves. We may con-
clude that the algorithm converges to a similar fitness value for all the solutions.
However, it remains to see if all solutions are equally good a posteriori. Un-
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fortunately, a variance analysis shows that this is not the case, concluding that
differences in makespan and feasibility errors across different solutions are indeed
significant.

5 Conclusions and Future Work

We have proposed a semantics for the FJSSP and a GA for solving it. Using both,
we have obtained a heuristic method to completely define the objective function
in the absence of expert’s knowledge. Once the problem is well-specified, the
semantics have also been used to analyse the solutions obtained with the GA,
with good results.We believe that further analysis is needed, in order to select
the best fuzzy schedule in terms of a posteriori performance. Furthermore, the
proposed semantics could be used to develop and compare different methods
for solving FJSSP. It would also be interesting to propose more benchmark
problems, based on those available for the classical JSSP.
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Abstract. The Shortest Common Supersequence problem is a hard
combinatorial optimization problem with numerous practical applica-
tions. We consider the use of memetic algorithms (MAs) for solving this
problem. A specialized local-improvement operator based on character
removal and heuristic repairing plays a central role in the MA. The trade-
off between the improvement achieved by this operator and its compu-
tational cost is analyzed. Empirical results indicate that strategies based
on partial lamarckism (i.e., moderate use of the improvement operator)
are slightly superior to full-lamarckism and no-lamarckism.

1 Introduction

The Shortest Common Supersequence Problem (SCSP) is a classical problem
from the realm of string analysis. In essence, the SCSP consists of finding a
minimal-length sequence S of symbols such that all strings in a certain set L
are embedded in S (a more detailed description of the problem and the notion of
embedding will be provided in next section). The SCSP provides a “clean” com-
binatorial optimization problem of great interest from the point of view of The-
oretical Computer Science. In this sense, the SCSP has been studied in depth,
and we now have accurate characterizations of its computational complexity.
These characterizations range from the classical complexity paradigm (i.e., uni-
dimensional complexity) to the more recent parameterized complexity paradigm
(i.e., multidimensional complexity). We will survey some of these results in next
section as well, but it can be anticipated that the SCSP is intrinsically hard
[1, 2, 3] under many formulations and/or restrictions.

These hardness results would not be critical were the SCSP a mere academic
problem. However, the SCSP turns out to be also a very important problem
from an applied standpoint: it has applications in planning, data compression,
and bioinformatics among other fields [4, 5, 6]. Thus, the practical impossibility
of utilizing exact approaches for tackling this problem in general motivates atten-
tion be re-directed to heuristic approaches. Such heuristic approaches are aimed
to producing probably- (yet not provably-) optimal solutions to the SCSP. Exam-
ples of such heuristics are the Majority Merge (MM) algorithm, and related
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variants [7], or the Alphabet-Leftmost (AL) algorithm [8]. More sophisti-
cated heuristics have been also proposed, for instance, evolutionary algorithms
(EAs) [7, 9].

This work will follow the way paved by previous EA approaches to this prob-
lem. To be precise, the use of memetic algorithms (MAs) will be considered.
The main feature of this MA is the utilization of a twofold local-improvement
strategy: on one hand, a repair mechanism is used to restore feasibility of so-
lutions, shortening them if possible; on the other hand, an iterated local-search
strategy is used to further improve solution quality. The computational impact
of this latter component will be here analyzed, and confronted with the quality
improvement attainable.

2 The Shortest Common Supersequence Problem

First of all, let us define the notion of supersequence. Let s and r be two strings
of symbols taken from an alphabet Σ. String s can be said to be a supersequence
of r (denoted as s � r) using the following recursive definition:

s � r �



TRUE if r = ε
FALSE if r �= ε and s = ε
s′ � r′ if r = αr′ and s = αs′, α ∈ Σ
s′ � r if r = αr′ and s = βs′ and α �= β, α, β ∈ Σ

(1)

Plainly, the definition above implies that r can be embedded in s, meaning
that all symbols in r are present in s in the very same order (although not
necessarily consecutive). We can now formally define the decisional version of
the SCSP:

Shortest Common Supersequence Problem
Instance: A set L of m strings {s1, · · · , sm}, si ∈ Σ∗ (where Σ is a certain
alphabet), and a positive integer k.
Question: Does there exist a string s ∈ Σ∗, |s| � k, such that s � si for all
si ∈ L?

Obviously, associated with this decisional problem, we have its optimization
version in which the smallest k is sought such that the corresponding instance is
a yes-instance. Let us now consider the computational complexity of the SCSP.

The SCS problem can be shown to be NP-hard, even if strong constraints
are posed on L, or on Σ. For example, it is NP-hard in general when all si

have length two [5], or when the alphabet size |Σ| is two [2]. At any rate, it
must be noted that NP-hard results are usually over-stressed; in fact, the NP-
characterization is a worst-case scenario, and such worst cases may be unlikely
(for example, 3-SAT is NP-hard, yet most instances are easily solvable; only
those located at the phase transition between satisfiability and non-satisfiability
are hard to solve). A more sensible characterization of hardness is required in
order to deal with these issues, and parameterized complexity is the key.
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Parameterized complexity [10] approaches problems from a multidimensional
perspective, realizing its internal structure, and isolating some parameters. If
hardness (that is, non-polynomial behavior) can be isolated within these pa-
rameters, the problem can be efficiently solved for fixed values of them. Here,
efficiently means in time O(f(k)nc), where k is the parameter value, n is the
problem size, f is an arbitrary function of k only, and c is a constant indepen-
dent of k and n. A paradigmatic example of this situation is provided by Vertex
Cover: it is NP-hard in general, but it can be solved in time O(1.271k+n), where
n is the number of vertices, and k is the maximum size of the vertex cover sought
[11, 12]. Problems such as Vertex Cover for which this hardness-isolation is
possible are termed fixed-parameter tractable (FPT). Non-FPT problem will fall
under some class in the W−hierarchy. Hardness for class W [1] is the current
measure of intractability.

Several parameterizations are possible for the SCSP. Firstly, the maximum
length k of the supersequence sought can be taken as a parameter. If the alphabet
size is constant, or another parameter, then the problem turns in this case to be
FPT, since there are at most |Σ|k supersequences, and these can be exhaustively
checked. However, this is not very useful in practice because k � max |si|. If
the number of strings m is used as a parameter, then SCS is W [1]−hard, and
remains so even if |Σ| is taken as another parameter [6], or is constant [3]. Failure
of finding FPT results in this latter scenario is particularly relevant since the
alphabet size in biological problems is fixed (e.g., there are just four nucleotides
in DNA). Furthermore, the absence of FPT algorithms implies the absence of
fully polynomial time approximation schemes (FPTAS) for the corresponding
problem, that is, there does not exist an algorithm returning solutions within
factor 1 + ε from the optimum in time which is polynomial in n and 1/ε.

3 Heuristics for the SCSP

The hardness results mentioned in the previous subsection motivate the utiliza-
tion of heuristic approaches for tackling the SCSP. One of the most popular
algorithms for this purpose is Majority Merge (MM). This is a greedy algo-
rithm that constructs a supersequence incrementally by adding the symbol most
frequently found at the front of the strings in L, and removing these symbols
from the corresponding strings. More precisely:

Heuristic MM (L = {s1 · · · , sm})
1: let s← ε
2: do
3: for α ∈ Σ do let ν(α) ←

∑
si=αs′

i
1

4: let β ← max−1{ν(α) | α ∈ Σ}
5: for si ∈ L, si = βs′i do let si ← s′i
6: let s← sβ
7: until

∑
si∈L |si| = 0

8: return s
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The myopic functioning of MM makes it incapable of grasping the global
structure of strings in L. In particular, MM misses the fact that the strings can
have different lengths [7]. This implies that symbols at the front of short strings
will have more chances to be removed, since the algorithm has still to scan the
longer strings. For this reason, it is less urgent to remove those symbols. In other
words, it is better to concentrate in shortening longer strings first. This can be
done by assigning a weight to each symbol, depending of the length of the string
in whose front is located. Branke et al. [7] propose to use precisely this string
length as weight, i.e., step 3 in the previous pseudocode would be modified to
have ν(α) ←

∑
si=αs′

i
|s′i|.

Another heuristic has been proposed by Rahmann [8] in the context of the
application of the SCSP to a microarray production setting. This algorithm is
termed Alphabet-Leftmost (AL), and its functioning can be described as
follows:

Heuristic AL (L = {s1 · · · , sm}, Π = 〈π1 · · ·π|Σ|〉)
1: let s← ε
2: let i← 1
3: do
4: if ∃sj ∈ L : sj = πis

′
j then

5: for sj ∈ L, sj = πis
′
j do let sj ← s′j

6: let s← sπi

7: end if
8: let i← (i MOD |Σ|) + 1
9: until

∑
si∈L |si| = 0

10: return s

As it can be seen, AL takes as input the list of strings whose supersequence
is sought, and a permutation of symbols in the alphabet. The algorithm then
proceeds with successive repetitions of this pattern until the all strings in L are
embedded. Obviously, unproductive steps (i.e., when the next symbol in row
does not appear at the front of any string in L) are ignored. Such a simple
algorithm can provide very good results for some SCSP instances.

4 Memetic Algorithms for the SCSP

One of the difficulties faced by an EA (or by a MA) when applied to the SCSP
is the existence of feasibility constraints, i.e., an arbitrary string s ∈ Σ∗, no
matter its length, is not necessarily a supersequence of strings in L. Typically,
these situations can be solved in three ways: (i) allowing the generation of infea-
sible solutions and penalizing accordingly, (ii) using a repairing mechanism for
mapping infeasible solutions to feasible solutions, and (iii) defining appropriate
operators and/or problem representation to avoid the generation of infeasible so-
lutions. We have analyzed these three approaches elsewhere, and we have found
that option (ii) provided better results than option (i) and (iii) (in this latter
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case, we considered an EA that used ideas from GRASP [13] as suggested in
[14]). We will thus elaborate on this option.

Our MA evolves sequences in |Σ|λ, where λ =
∑

si∈L |si|. Before being
submitted for evaluation, these sequences are repaired using a function ρ :
Σ∗ × (Σ∗)m → Σ∗ whose behavior can be described as follows:

ρ (s, L) =




s if ∀i : si = ε
ρ(s′, L) if ∃i : si �= ε and �i : si = αs′i and s = αs′

αρ(s′, L|α) if ∃i : si = αs′i and s = αs′

MM(L) if ∃i : si �= ε and s = ε

(2)

where L|α = {s1|α, · · · , sm|α}, and s|α equals s′ when s = αs′, being s otherwise.
As it can be seen, this repairing function not only completes s in order to have
a valid supersequence, but also removes unproductive steps, as it is done in AL.
Thus, it also serves the purpose of local improver to some extent. After this
repairing, raw fitness (to be minimized) is simply computed as:

fitness (s, L) =
{

0 if ∀i : si = ε
1 + fitness(s′, L|α) if ∃i : si �= ε and s = αs′

(3)

As mentioned in Sect. 1, an additional local-improvement level is considered.
To do so, we have considered the neighborhood define by the Deletek : Σ∗ ×
(Σ∗)m → Σ∗ operation [8]. The functioning of this operation is as follows:

Deletek (s, L) =
{

ρ(s′, L) if k = 1 and s = αs′

αDeletek−1(s′, L|α) if k > 1 and s = αs′
(4)

This operation thus removes the k-th symbol from s, and then submits it to the
repair function so that all all strings in L can be embedded. Notice that the
repairing function can actually find that the sequence is feasible, hence resulting
in a reduction of length by 1 symbol. A full local-search scheme is defined by
iterating this operation until no single deletion results in length reduction:

Heuristic LS (s ∈ Σ∗, L = {s1 · · · , sm})
1: let k ← 0
2: while k < |s| do
3: let r ← Deletek(s, L)
4: if fitness(r) < fitness(s) then
5: let s← r
6: let k ← 0
7: else
8: let k ← k + 1
9: end if

10: end while
11: return s

The application of this LS operator has a computational cost that we mea-
sure as the number of partial evaluations in step 3 above. More precisely, since



Memetic Algorithms with Partial Lamarckism 89

the application of the repairing function starts at position k, we compute each
application of Deletek to s as (|r| − k)/|r| fitness evaluations. This is accu-
mulated during the run of the MA to have a more sensible estimation of the
search cost.

5 Experimental Results

The experiments have been done with a steady-state MA (popsize = 100,
pX = .9, pm = 1/n, maxevals = 100, 000), using binary tournament selec-
tion, uniform crossover, and random-substitution mutation. In order to analyze
the impact of local search, the LS operation is not always applied, but randomly
with probability p. The values p ∈ {0, 0.01, 0.1, 0.5, 1} have been considered. We
denote by MAx% the use of p = x/100. Notice that MA0% would then be a plain
repair-based EA.

Two different sets of problem instances have been used in the experimenta-
tion. The first one is composed of random strings with different lengths. To be
precise, each instance is composed of eight strings, four of them with 40 symbols,
and the remaining four with 80 symbols. Each of these strings is randomly built,
using an alphabet Σ. Four subsets of instances have been defined using different
alphabet sizes, namely |Σ| =2, 4, 8, and 16. For each alphabet size, five different
instances have been generated.

Secondly, a more realistic benchmark consisting of strings with a common
source has been considered. A DNA sequence from a SARS coronavirus strain has
been retrieved from a genomic database1, and has been taken as supersequence;
then, different sequences are obtained from this supersequence by scanning it
from left to right, and skipping nucleotides with a certain fixed probability. In
these experiments, the length of the supersequence is 158, the gap probability is
10%, 15%, or 20% and the number of so-generated sequences is 10.

First of all, the results for the random strings are shown in Table 1. All MAs
perform notably better than AL. The results for MM (not shown) are similar
to those of AL (more precisely, they are between 2.5% and 10% better, still
far worse than the MAs). Regarding the different MAs, performance differences
tend to be higher for increasing alphabet sizes. In general, MAs with p > 0
are better than MA0% (the differences are statistically significant according to
a Wilcoxon ranksum test [15] in above 90% of the problem instances). MA1%

provides somewhat better results, although the improvement with respect to the
other MAs (p > 0) is only significant in less than 20% of the problem instances.

The results for the strings from the SARS DNA sequence are shown in Ta-
ble 2. Again, AL performs quite poorly here. Unlike the previous set of instances,
MM (not shown) does perform notably better than AL. Actually, it matches the
performance of MA0% for low gap probability (10% and 15%), and yields an
average 227.8 for the larger gap probability. In this latter problem instance, the
MAs with p > 0 seem to perform marginally better. MA100% and MA1% provide

1 http://gel.ym.edu.tw/sars/genomes.html, accession AY271716.
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Table 1. Results of the different heuristics on 8 random strings (4 of length 40, and 4
of length 80), for different alphabet sizes |Σ|. The results of AL are averaged over all
permutations of the alphabet (or a maximum 100,000 permutations for |Σ| = 16), and
the results of the EAs are averaged over 30 runs. In all cases, the results are further
averaged over five different problem instances

AL MA0% MA1%

|Σ| best mean ± std.dev. best mean ± std.dev. best mean ± std.dev.

2 121.4 123.4 ± 2.0 111.2 112.6 ± 0.8 110.4 112.8 ± 1.0
4 183.0 191.2 ± 4.7 151.6 155.2 ± 1.9 149.4 152.7 ± 1.7
8 252.2 276.8 ± 6.4 205.4 213.5 ± 4.0 201.8 207.3 ± 2.2
16 320.6 352.9 ± 7.4 267.0 281.8 ± 5.9 266.2 274.2 ± 3.0

MA10% MA50% MA100%

|Σ| best mean ± std.dev. best mean ± std.dev. best mean ± std.dev.

2 111.6 113.1 ± 0.8 111.4 113.2 ± 0.8 111.2 113.1 ± 0.8
4 149.4 153.5 ± 1.5 150.0 153.3 ± 1.4 149.2 153.3 ± 1.6
8 202.0 207.9 ± 2.2 204.0 208.2 ± 2.0 203.0 208.2 ± 2.1
16 266.6 274.7 ± 3.0 268.4 275.0 ± 2.8 267.2 275.0 ± 3.2

Table 2. Results of the different heuristics on the strings from the SARS DNA se-
quence. The results of AL are averaged over all permutations of the alphabet (or a
maximum 100,000 permutations for |Σ| = 16), and the results of the EAs are averaged
over 30 runs

AL MA0% MA1%

gap% best mean ± std.dev. best mean ± std.dev. best mean ± std.dev.

10% 307 315.2 ± 6.8 158 158.0 ± 0.0 158 158.0 ± 0.0
15% 293 304.3 ± 8.8 158 158.0 ± 0.0 158 159.0 ± 2.8
20% 274 288.3 ± 8.6 165 180.8 ± 15.7 159 177.0 ± 9.3

MA10% MA50% MA100%

gap% best mean ± std.dev. best mean ± std.dev. best mean ± std.dev.

10% 158 158.0 ± 0.0 158 158.0 ± 0.0 158 158.0 ± 0.0
15% 158 159.8 ± 3.7 158 159.8 ± 3.0 158 159.1 ± 2.1
20% 163 179.4 ± 9.2 159 178.1 ± 9.9 161 176.5 ± 9.0

the best and second best mean results (no statistical difference between them).
A Wilcoxon ranksum test indicates that the difference with respect to MA0% is
significant (at the standard 5% significance).

6 Conclusions

We have studied the deployment of MAs on the SCSP. The main goal has been
to determine the way that local search affects the global performance of the
algorithm. The experimental results seem to indicate that performance differ-
ences are small but significant with respect to a plain repair-based EA (i.e., no
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local search). Using partial lamarckism (0 < p < 1) provides in some problem
instances better results, and does not seem to be harmful on any of the remain-
ing instances. Hence, it can offer the best tradeoff between quality improvement
and computational cost. Future work will be directed to confirm these results on
other neighborhood structures for local search. In this sense, alternatives based
on symbol insertions or symbol swaps can be considered [8].
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Abstract. Networks of Evolutionary Processors constitute an interest-
ing computing model motivated by cell biology. Pictural networks of
evolutionary processors have been introduced to handle generation of
pictures of rectangular arrays of symbols. Here we introduce an exten-
sion of this model to generate pictures that are arrays, not necessarily
rectangular, and compare these with array generating Puzzle grammars.
We also provide an extension to generate 3D rectangular arrays.

1 Introduction

An interesting Computing model inspired by cell biology, called Network of Evo-
lutionary processors, was introduced by Castellanos et al [1] and the investigation
of this model continued in Castellanos et al [2] and Martin-Vide et al [6]. This
notion has been carried over to pictures and Pictural networks of evolution-
ary processors (PNEP) have been considered by Mitrana et al [7] . A PNEP has
nodes that are very simple processors able to perform just one type of operation,
namely insertion or deletion of a row or substitution of a symbol in rectangular
arrays. These nodes are endowed with filters defined by some membership or
random context conditions.

On the other hand a variety of two-dimensional grammars generating picture
languages of rectangular or non-rectangular arrays have been introduced and
studied extensively in the literature [8, 4, 5]. Certain grammars for description
of 3D pictures have also been introduced [11].
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In this paper networks of evolutionary processors generating pictures that are
arrays of symbols, not necessarily rectangular, are introduced. Comparison with
Array generating Puzzle grammars [8, 9] is made. Also extending the study in [7],
generation of 3D rectangular pictures of symbols using Networks of Evolutionary
Processors is considered.

2 Preliminaries

We refer to [4] for notions relating to two dimensional arrays. We recall the
definition of a puzzle grammar introduced in [8, 9].

Definition 1. A basic puzzle grammar (BPG) is a structure G = (N,T,R, S)
where N and T are finite sets of symbols; N ∩ T = φ. Elements of N are called
non-terminals and elements of T , terminals. SεN is the start symbol or the ax-
iom. R consists of rules of the following forms:
A →©a B, A → a©B, A→ B©a, A→©B a

A → ©a
B

, A→ a
©B , A→ B

©a , A → ©B
a

A→©a,where A, B, ∈ N and a ∈ T

Derivations begin with S written in a unit cell in the two-dimensional plane,
with all the other cells containing the blank symbol #, not in N ∪ T . In a
derivation step, denoted ⇒, a non-terminal A in a cell is replaced by the right-
hand member of a rule whose left-hand side is A. In this replacement, the circled
symbol of the right-hand side of the rule used, occupies the cell to the right or
the left or above or below the cell of the replaced symbol depending on the type
of rule used. The replacement is possible only if the cell to be filled in by the
non-circled symbol contains a blank symbol.

The set of pictures or figures generated by G, denoted L(G), is the set of
connected, digitized finite arrays over T , derivable in one or more steps from the
axiom.

Definition 2. A context-free puzzle grammar (CFPG) is a structure G = (N,T,
R, S) where N,T, S are as in Definition 1 and R is the set of rewriting rules
of the form A → α, where α is a finite, connected array of one or more cells,
each cell containing either a nonterminal or a terminal symbol, with a symbol in
one of the cells of α being circled.

The set of pictures generated by a context-free puzzle grammar G is defined
analogous to Definition 1

Example 1. The BPG G1 = (N,T,R, S) where N = {S,A,B}, T = {a}.

R = {S →©a S, S →©a A, B →©a S, B → a,A → A
©a , A→ B

©a }
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This BPG generates the picture language of pictures describing ’staircases’ shown
below.

a
a

a a a
a
a

a a a

Example 2. Consider the context free puzzle grammar, G2 = (N,T,R, S) where
N = {S,C,D,B}, T = {a}

R = {S → C ©aD
B

, B → ©a
B

, C → C ©a ,D →©a D ,C → a ,D → a ,B → a}

This CFPG generates the picture language of pictures describing ’token T ’ shown
below.

a a a a a a
a
a
a

3 Contextual Pictural Networks of Evolutionary
Processors(CPNEP)

We now introduce the notion of contextual pictural networks of evolutionary
processors using contextual insertion and deletion rules. These rules are a special
case of contextual insertion/deletion studied by Mitrana [10].

A contextual pictural network of evolutionary processors (CPNEP) of size n
is a construct

Γ = (V,N1, N2, . . . , Nn, G,Ni0),

where:

– V is an alphabet,
– for each 1 ≤ i ≤ n, Ni = (Ai,Mi, P Ii, F Ii, POi, FOi) is the i-th evolutionary

node processor of the network. The parameters of every processor are:
• Ai is a multiset of finite support of 2D pictures over V . This multiset

represents the 2D pictures existing in the i-th node at the beginning of
any computation. Actually, in what follows, we consider that each 2D
picture appearing in any node at any step has an arbitrarily large number
of copies in that node, so that we identify multisets by their supports.
Therefore, the set Ai is the set of initial pictures in the i-th node.

• Mi is a finite set of contextual evolution rules of one of the following
forms:

A → B(substitution rules),
(a, ε) → (a,A)(r)(right cell insertion rules),
(ε, a) → (A, a)(l)(left cell insertion rules),
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(
ε
a

)
→

(
A
a

)
(u)(up cell insertion rules)(

a
ε

)
→

(
a
A

)
(d)(down cell insertion rules)

(a,A) → (a, ε)(r)(right cell deletion rules),
(A, a) → (ε, a)(l)(left cell deletion rules),(

A
a

)
→

(
ε
a

)
(u)(up cell deletion rules)(

a
A

)
→

(
a
ε

)
(d)(down cell deletion rules)

More clearly, the set of evolution rules of any processor contains either
substitution, or deletion or insertion rules.

• PIi and FIi are subsets of V representing the input filter. This filter,
as well as the output filter, is defined by random context conditions;
PIi forms the enforcing context condition and FIi forms the forbidding
context condition. A 2D picture w ∈ V ∗2 can pass the input filter of the
node processor i, if w contains each element of PIi irrespective of the
direction in which it appears, but w can contain no element of FIi. Note
that any of the random context conditions may be empty, in which case
the corresponding context check is omitted.
With respect to the input filter we define the predicate

ρi(w) : w can pass the input filter of the node processor i.

• POi and FOi are subsets of V representing the output filter. Analo-
gously, a 2D picture can pass the output filter of a node processor if it
satisfies the random context conditions associated with that node. Sim-
ilarly, we define the predicate

τi(w) : w can pass the output filter of the node processor i.

– G = ({N1, N2, . . . , Nn}, E) is an undirected graph called the underlying
graph of the network. The nodes of G correspond to the evolutionary pro-
cessors of the CPNEP. The edges of G, that is, the elements of E, are given
in the form of sets of two nodes.

– Ni0 is the output node of the network.

By a configuration (state) of an CPNEP as above we mean an n-tuple C =
(L1, L2, . . . , Ln), with Li ⊆ V ∗2 for all 1 ≤ i ≤ n. A configuration represents
the sets of 2D pictures (remember that each 2D picture appears in an arbitrarily
large number of copies) which are present in any node at a given moment; clearly
the initial configuration of the network is C0 = (A1, A2, . . . , An). A configuration
can change either by an evolutionary step or by a communicating step. When
changing by an evolutionary step, each component Li of the configuration is
changed in accordance with the evolutionary rules associated with the node i.
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Formally, we say that the configuration C1 = (L1, L2, . . . , Ln) directly changes
for the configuration C2 = (L′

1, L
′
2, . . . , L

′
n) by an evolutionary step, written as

C1 → C2 if L′
i is the set of 2D pictures obtained by applying the rules of Ri

to the 2D pictures in Li as follows (we present one of the cases of contextual
insertion/deletion, the other cases being similar):

– A node having substitution rules performs a substitution as follows: one
occurrence of the lefthand side of a substitution rule is replaced by the
righthand side of that rule. If a letter can be replaced by more than one new
letter (there are more than one substitution rules with the same lefthand
side), then this replacement will be done in different copies of the original
2D picture, thus resulting in a multiset of new pictures, in which each 2D
picture appears in an arbitrary number of copies.
If the procedure above is applicable to more than one occurrence of the same
letter, then each such occurrence will be replaced accordingly, thus resulting
again in an even larger multiset of new 2D pictures, in which each 2D picture
appears in an arbitrary number of copies.

– A node having a left cell insertion rule
(ε, a) → (A, a)(l) performs a cell insertion as follows: A is inserted on the
left of the cell containing a. Similarly for the other insertion rules.

– A node having a left cell deletion rule
(A, a) → (ε, a)(l) performs a cell deletion as follows: A is deleted on the left
of the cell containing a. Similarly for the other deletion rules. A cell can be
deleted if it contains symbols in the lefthand side of the cell deletion rule,
only.

More precisely, since an arbitrarily large number of copies of each 2D picture
is available in every node, after an evolutionary step, in each node one gets again
an arbitrarily large number of copies of any 2D picture which can be obtained
by using any rule associated with that node as defined above. By definition, if
Li is empty for some 1 ≤ i ≤ n, then L′

i is empty as well.
We say that the configuration C1 = (L1, L2, . . . , Ln) directly changes for

the configuration C2 = (L′
1, L

′
2, . . . , L

′
n) by a communication step, written as

C1 � C2 if for every 1 ≤ i ≤ n,

L′
i = Li \ {w ∈ Li | τi(w) = true} ∪

⋃
{Ni,Nj}∈E

{x ∈ Lj | (τj(x) ∧ ρi(x)) = true}.

Note that the 2D pictures which can pass the output filter of a node are sent
out irrespective of they being received by any other node.

Let Γ = (V,N1, N2, . . . , Nn, G,Ni0) be an CPNEP. By a computation in
Γ we mean a sequence of configurations C0, C1, C2, . . ., where C0 is the initial
configuration, C2i → C2i+1 and C2i+1 � C2i+2 for all i ≥ 0.

If the sequence is finite, we have a finite computation. The result of any
finite or infinite computation is a 2D picture language which is collected in a
designated node called the output (master) node of the network. If C0, C1, . . . is
a computation, then all 2D pictures existing in the node Ni0 at some step t –
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the i0-th component of Ct – belong to the 2D picture language generated by the
network. Let us denote this language by L(Γ ).

Example 3. Consider the CPNEP generating 2D pictures of staircases

Γ = ({a,A,B}, N1, N2, N3, N4, N5,K5, N5)

N1 = ({a}, (a, ε) → (a,A)(r), (A, ε) → (A,A)(r),
(A, ε) → (A,B)(r), (C, ε) → (C,A)(r), {C}, {A,B}, {B}, φ

N2 = (φ,A → a, {A,B}, φ, {a,B}, {A})

N3 = (φ,

(
ε
B

)
→

(
B
B

)
(u),

(
ε
B

)
→

(
C
B

)
(u), {B}, {A}, {C}, φ)

N4 = (φ,B → a, {B,C}, {A}, {a,C}, {B})

N5 = (φ,C → a, {a,C}, {A,B}, φ, {a})

Example 4. Consider the CPNEP generating pictures of token T

Γ = ({a,A,B}, N1, N2,K2, N2)

N1 = ({aAa}, (a, ε) → (a, a)(r), (ε, a) → (a, a)(l),(
A
ε

)
→

(
A
A

)
(d),

(
A
ε

)
→

(
A
B

)
(d), φ, φ, {B}, φ)

N2 = (A → a,B → a, {B}, φ, φ, {a})

Theorem 1. (i) The families L(2D-CPNEP) and L(BPG) intersect. (ii) The
family L(2D-CPNEP) also intersects L(CFPG).

The statements are clear from Examples 1,2,3,4.

4 3D-Pictural Network of Evolutionary Processors

4.1 Three Dimensional Picture Languages

For a given alphabet V , a 3D picture p of size l×m× n over V is a 3D array of
the form p = (aijk)i∈1,l, j∈1,m, k∈1,n with aijk ∈ V for i ∈ 1, l, j ∈ 1,m, k ∈ 1, n.
We denote V ∗∗∗ the set of all 3D pictures over V (including the empty picture
denoted by λ). A 3D picture (or rectangular)language over V is a subset of V ∗∗∗.
A 3D subpicture of a 3D picture p is a 3D sub array of p. A (2×2×2) subpicture
of p is called a cube of p. The set of all cubes of p is denoted by B2,2,2(p). In the
sequel, we will identify the boundaries of a picture by surrounding it with the
marker #.A picture p bounded by markers # is denoted by p̂.

)
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4.2 Recognizability of 3D-Rectangles

Here we consider local and recognizable 3D-rectangular languages [3].
A 3D-rectangle over the alphabet {a, b, c, d, e, f, g, h} is given below:

�
�

�

�
�

�

�
�

�

�
�

�

a b

c d

e f

g h

Given a 3D-rectangle p, Bi,j,k(p) denotes the set of all sub 3D-rectangles p of
size (i, j, k), cube is a 3D-rectangle of size (2, 2, 2).We denote by Σl×m×n the set
of 3D-rectangles of size (l,m, n) over the alphabet Σ. B2,2,2 is in fact a set of
cubes.

Definition 3. Let Σ be a finite alphabet. The 3D-rectangular language L ⊂ Σ���

is local if there exists a set of cubes � ⊆ (Σ ∪ {#})2×2×2 such that L = {p ∈
Σ���|B2,2,2(p̂) ⊆ �}.

The family of local picture languages, denoted by 3D-LOC, is a generalization of
the two dimensional case of local languages defined in [5]. Given a set of cubes
∆, the 3D-local picture language L generated by ∆ is denoted by L(∆).

Definition 4. Let Σ be a finite alphabet. A 3D-rectangular language L ⊆ Σ���is
called recognizable if there exists a local 3D-rectangular language L′ (given by a
set � of cubes) over an alphabet of Γ and a mapping Π : Γ → Σ such that
L = Π(L′) .

Example 5. The language L of 3D-rectangular pictures over single alphabet of
any size (l,m, n) surrounded by # symbol on all 6 faces is a local 3D rectangular
language [3]. Note that the 3D-rectangular languages over one letter alphabet
with all sides of equal length is not local but it is a recognizable language.

4.3 The Family 3D-PNEP

We now extend the notion of PNEP [7] to 3D rectangular pictures
A 3D- pictural network of evolutionary processors (3D-PNEP for short) of

size n is a construct

Γ = (V,N1, N2, . . . , Nn, G,Ni0),

where the components are as in [7] except that the objects are 3D rectangular
pictures and evolution rules are as follows:

a→ b, a, b ∈ V (substitution rules),
a→ ε(x)(b), a ∈ V (back face deletion rules),
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a→ ε(x)(f), a ∈ V (front face deletion rules),
a→ ε(y)(r), a ∈ V (right face deletion rules),
a→ ε(y)(l), a ∈ V (left face deletion rules),
a→ ε(z)(t), a ∈ V (top face deletion rules),
a→ ε(z)(bo), a ∈ V (bottom face deletion rules),

ε→ a(x)(b), a ∈ V (back face insertion rules),
ε→ a(x)(f), a ∈ V (front face insertion rules),
ε → a(y)(r), a ∈ V (right face insertion rules),
ε→ a(y)(l), a ∈ V (left face insertion rules),
ε → a(z)(t), a ∈ V (top face insertion rules),
ε→ a(z)(bo), a ∈ V (bottom face insertion rules),

a→ ε(x)(/), a ∈ V (front or back face deletion rules),
a→ ε(y)(−), a ∈ V (left or right face deletion rules),
a→ ε(z)(|), a ∈ V (top or bottom face deletion rules),

ε → a(x)(/), a ∈ V (front or back face insertion rules),
ε → a(z)(|), a ∈ V (top and bottom face insertion rules),
ε → a(y)(−), a ∈ V (left or right face insertion rules),

More clearly, the set of evolution rules of any processor contains either substi-
tution, or deletion or insertion rules.

Let Γ = (V,N1, N2, . . . , Nn, G,Ni0) be an 3D-PNEP. By a computation in
Γ we mean a sequence of configurations C0, C1, C2, . . ., where C0 is the initial
configuration, C2i → C2i+1 and C2i+1 � C2i+2 for all i ≥ 0 where → denotes
evolution and � denotes communication.

If the sequence is finite, we have a finite computation. The result of any finite
or infinite computation is a 3D rectangular picture language which is collected in
a designated node called the output (master) node of the network. If C0, C1, . . .
is a computation, then all 3D rectangular pictures existing in the node Ni0 at
some step t – the i0-th component of Ct – belong to the 3D rectangular picture
language generated by the network. Let us denote this language by L(Γ ).

4.4 Comparison

We start with some examples which constitute our basis for comparing the class
of 3D rectangular picture languages generated by 3D-PNEP with other 3D rect-
angular picture generating devices.

Example 6. Let L1 denote the set of all 3D rectangular pictures p over the al-
phabet {a}. The 3D rectangular language L1 is described as
L1 = {p ∈ {a}∗∗∗|x(p), y(p), z(p) ≥ 1}. The language L1 can be generated in the
fourth node N4 by the following 3D-PNEP of size 4.

Γ = ({a,W}, N1, N2, N3, N4,K4, N4), where
N1 = ({ε}, {ε → a(x)(/), ε →W (x)(/)}, φ, {A, T}, {W}, φ)
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N2 = (φ, {ε → a(y)(−), ε → T (y)(−)}, {W}, φ, {T}, φ)
N3 = (φ, {T → a,W → a}, {W,T}, φ, {a}, {W,T})
N4 = (φ, {ε → a(z)(|)}, {a}, {T}, φ, {a})
Here L(Γ ) = L1.

Example 7. Let X be the 3D-rectangular picture of size (2, 2, 2) over the alpha-
bet {a}. Let L2 be the set of all 3D-rectangular pictures p over the alphabet
{a} with all sides equal. This 3D-rectangular language L2 can be formally de-
scribed as

L2 = {p ∈ {a}∗∗∗ | x(p) = y(p) = z(p) ≥ 1}.
L2 can be generated in the output node N5 by the following complete 3D-PNEP
of size five:

Γ = ({a,A,B,C}, N1, N2, N3, N4, N5,K5, N5),

where N1 = ({X}, {ε → A(x)(b)}, {a}, {A,B,C}, {A}, ∅)
N2 = (∅, {ε → B(z)(bo)}, {a,A}, {B,C}, {B}, ∅)
N3 = (∅, {ε → C(y)(l)}, {a,A,B}, {C}, {C}, ∅)
N4 = (∅, {A → a,B → a,C → a}, {A,B,C}, ∅, {a}, {A,B,C})
N5 = (∅, {a → a}, {a}, {A,B,C}, ∅, {a}).
Here L(Γ ) = L2

Now we set:

3D-LOC is the class of local 3D picture languages [3].
3D-REC is the class of recognizable picture languages
L(3D-PNEP) is the class of 3D-rectangular picture languages generated by
3D-PNEP’s.

Now we are ready to give the result:

Theorem 2. (i) The families L(3D-PNEP) and 3D-LOC are incomparable but
not disjoint. (ii) The family L(3D-PNEP) intersects the family 3D-REC.

Proof. (i) The language of 3D-rectangular pictures over {a} from Example 6 is in
3D-LOC ([3]) and L(3D-PNEP). On the other hand, the language from Example
7 is not in 3D-LOC ([3]) but is in L(3D-PNEP). The language of 3D-arrays of
equal size in which all the diagonal elements are 1 and the remaining elements
are 0 and it is known to be in 3D-LOC [3] but it cannot be generated by any
3D-PNEP as, informally speaking, 3D-PNEP’s have no ability to fix the position
of symbols 1 in the diagonal when using face insertion rule. Hence 3D-LOC and
L(3D-PNEP) are incomparable.
(ii)The language generated by the 3D-PNEP in Example 7 is in 3D-REC[3]

5 Conclusion

Here we have extended the study of generation of pictures of rectangular arrays
to 2D pictures of arrays not necessarily rectangular by Networks of Evolution-
ary Processors. Extension of [7] to pictures of 3D rectangular arrays are also
considered.
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Abstract. A very simple implementation of NEPs is introduced to ac-
cept and analyze linguistic structures with the shape NP V NP . The
formalization takes advantage of NEPs’ features -modularity, specializa-
tion and parallelism- to develop a syntactic recognizer that is able to
distinguish correct sentences working with lineal strings as input and
lineal labeled structures as output.

1 Introduction

Networks of evolutionary processors (NEP) are a new computing mechanism
directly inspired in the behavior of cell populations. Every cell is described by a
set of words (DNA) evolving by mutations, which are represented by operations
on these words. At the end of the process, only the cells with correct strings will
survive. In spite of the biological inspiration, the architecture of the system is
directly related to the Connection Machine [20] and the Logic Flow paradigm
[14]. Moreover, the global framework for the development of NEPs has to be
completed with the biological background of DNA computing [27], membrane
computing [26] – that focalizes also in the behavior of cells –, and specially with
the theory of grammar systems [8], which share with NEPs the idea of several
devices working together and exchanging results.

First precedents of NEPs as generating devices can be found in [11] and [10].
The topic was introduced in [3] and [25], and further developed in [2], [4], [9].
A new approach to networks of evolutionary processors as accepting devices has
started in [24].
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NEPs can be defined as mechanisms which evolve by means of processors that
act according some predefined rules, whose outcome travels to the other nodes
if they accept it after passing a filtering process. This functioning allows the
specialization of each processor, what is a quite suggestive feature for linguistics.

The present work aims to be a preliminary implementation of NEPs for Nat-
ural Language Processing (NLP), especially for the recognition and analysis of
simple syntactic structures. The main idea is to model NEPs that can accept
simple linguistic strings, adapting and simplifying some ideas introduced in [24].
To do so, some important concepts that can relate NEPs and natural language
are given in Section 2. In Section 3 we introduce the main features of NEPs for
NLP and the formal definition of the system. An example is given in Section 4.
Finally, Section 5 is devoted to summarize the results and remark some future
lines of research in the area.

2 NEPs, Modularity and Syntax

The idea of several autonomous and specialized processors collaborating in the
same generation or recognition process, with a constant exchange of informa-
tion, can suggest the concept of modularity. Modularity has shown to be a very
important idea in a wide range of fields. Cognitive science, natural language pro-
cessing, computer science and, of course, linguistics are examples of fields where
modular models have been proposed.

It is a commonplace belief in cognitive science that complex computational
systems are at least weakly decomposable into components. In general, modular
theories in cognitive science propose a number of independent but interacting cog-
nitive ‘modules’ that are responsible for each cognitive domain. Specific arrange-
ment of those modules usually varies in each theory, but generally each mental
module encapsulates a definable higher mental function. There may be, for exam-
ple, separate structures for spatial reasoning, mathematical ability, musical tal-
ent, phonological skill, oral lexicon, written lexicon, nonverbal thought, and ver-
bal thought to name a few. Even though the idea of modularity has been implicit
in cognitive science for a long time, it is with the publication of The Modularity
of Mind [17] when those implicit ideas that had been current over the previous two
decades crystallized into a single recognizable hypothesis: the mind is not a seam-
less, unitary whole whose functions merge continously into one another; rather,
it comprises a number of distinct, specialized, structurally idiosyncratic modules
that communicate with other cognitive structures in only very limited ways.

Fodor’s theory is not by far the only one about modularity of mind. In fact,
in the 1980s there starts a new trend represented by authors such as Chomsky
[6], Garfield [18], Jackendoff [21] and, of course, Fodor himself, who defend the
non-homogeneous character of mind. The theory of modularity is also present in
linguistic approaches. In fact, the modular approach to grammar has been shown
to have important consequences for the study of language (cf. [28]). This has led
many grammatical theories to use modular models. The idea of having a sys-
tem made up of several independent components (syntax, semantics, phonology,
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morphology, etc.) seems to be a good choice to account for linguistic issues. We
may cite several modular approaches in Linguistics, from Chomsky’s Generative
Grammar [5] to Autolexical Syntax [28] or Jackendoff’s view of the Architecture
of Language Faculty [21] just to name a few. One of the main advantages of
modular grammar is that they can reduce delays imposed by monolithic or non-
modular grammars. This reduction of delays is due to the fact that, in modular
grammars, subsystems of grammatical principles can be applied independently
of each other and, sometimes, in a parallel fashion. It seems therefore that this
idea of linguistic production is quite related to the working of a NEP.

Several authors have defended as well internal modularity in the different
dimensions of grammar [29, 15, 19]. In [7], for example, it is suggested a highly
modular organization of syntax where modules are determined by representations
they recover. Also in [1, 16] different modularizations of the syntactic module
are proposed. In those approaches syntax can be divided into small components
with a high degree of specialization, explaining independently some aspects of
linguistic structures. From this point of view, we think that NEPs provide a quite
suitable theoretical framework for the formalization of modularity in syntax for
both processes, generation and recognition sentences.

Here we introduce a formalization for implementing the recognition of correct
sentences of natural language. The idea is not original, because a preliminary
approach to accepting HNEPs has been already introduced in [24]. Nevertheless,
this is the first attempt to deal with linguistic issues from this perspective. Our
paper tries operating by means of specializing each one of the nodes of a NEP for
the labeling of different phrases. In the present paper, we introduce the idea that
the system that can recognize strings can also analyze sentences of the natural
language. Our goal is to construct a NEP able to decide whether or not a string
of natural language is correct, and analyze its structure. We want to do that
using only lineal inputs and outputs, this is, our goal is not to generate trees,
but recognize and label the internal pattern structure of sentences.

The linguistic NEP for analyzing simple sentences has to recognize every
word, make a map of its linguistic features, establish the beginning and the
end to the complex units, gather the non-terminal units in phrases and finally
give a lineal structural version of the whole sentence. We think the NEPs are a
good way for designing processors being allowed to account for only one given
syntactical function. In this way, and thanks to the filters, it may be easy to
construct a semi-universal automaton for comprehension of almost every well-
formed sentence in a language. In the meantime, the device we are to describe
now is just modeled for the processing of simple sentences with subcategorized
complements NP .

3 Formalizing a NEP for the Analysis of Simple
Sentences

In order to implement a NEP for analyzing simple sentences, we propose the
nodes of the system to be specialized for accepting and labeling different types
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of structures inside a sentence: nominal phrases (NP), verbs (V), prepositional
phrases (PP), or adverbial complements (AdvP). In the present paper, in order to
test if it is possible such a functioning, we are going to construct a device devoted
to the recognition of correct syntactic structures with the shape [S V O], where
S → [NP ], O → [NP ], this is, sentences with the form [[NP ] V [NP ]], being
this a common arrangement in syntax. Speakers use very frequently sentences of
this type, such as “I have a book”. We think that, if it is possible to define such
a device, then it will be quite easy to formalize other mechanisms able to deal
with more complex linguistic strings.

The system has two main goals: a) to recognize correct strings, like an au-
tomaton could do, and b) to give an lineal output explaining the syntactical
structure of the input sentence. For the system to be able to achieve the sec-
ond objective, we introduce a set of labels and rules for labeling sub-strings of
non-terminal symbols.

When assigning to the processors their specialized functions, we make some
theoretical options. First, a node will be defined whose only mission is to be
the input node, reading the terminal symbols of the input string. On the other
hand, a node will be specialized only in the labeling and recognition of phrases
in order to produce the final output string. Moreover, since the structure we are
working with has just two types of sub-structures, namely NP and V , at least
two specialized nodes are needed, one for the recognition and labeling of NP
and the other one for the recognition and analysis of V . In this way, at least a
graph of four nodes has to be designed. Finally, as a methodological option, we
design a support node, which will process some of the terminal elements that
are part of a NP structure. The reason for having a processor like this in the
system is to decrease the complexity in the working of the element that deals
with NP , even if it can be thought than the general complexity increases. This
support node cannot use labeling rules.

Therefore, for formalizing such a device, the following nodes are needed: a)
input node, b) output node, c) a node for labeling NP, d) a node for analyzing
V, e) a transition node. In the input filter of specialized nodes, the only elements
accepted will be those that can be part of phrases they can recognize. In the
output filter of these nodes, only labeled phrases will be allowed to pass and be
sent to the other filters. However, in the support node, no labeled element will
belong to the input filter, because it can accept just terminal elements, sending
non-terminal structural symbols. The graph structure of the NEP (Figure 1)
is not complete. Exchange of elements is possible only between nodes that are
connected by an edge. Hence, no communication is possible between N0 and N4.
We think this is an important feature for the decreasing of complexity in the
transition, because it avoids the elements of N0 to be sent directly to N4, which
cannot accept them, because the filter discards terminal symbols in the output
node. In the same way, neither N1 and N3 are communicated, being N1 a node
for the processing of non-nuclear elements of NP , which cannot be part of V ′.

The recognition of the symbols performed by the NEP will be done in two
steps: a) classification of the terminal symbols and rewriting by non-terminal
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Fig. 1. Graph structure

items corresponding to grammatical categories, and b) recognition and labeling
of nominal phrases and sentences. To do that, two types of alphabets are nec-
essary: V , the alphabet of the input symbols, which are terminal strings, this
is, lexical items, and Σ the alphabet of categorial symbols, which correspond to
grammatical categories together with a matrix of morphological traits, if needed.
For simple sentences we are dealing with, the symbols belonging to Σ will be
[N ], [V ], [ART ], [ADJ ].

For accomplishing grammatical rules of agreement between subject and verb,
some of these symbols have to be completed with the introduction of morpho-
logical traits. First of all, two different marks will be introduced in the category
[V ] in order to distinguish between the two different forms of the English verb
in present: 1 stands for the general form, and 2 for the third person. In this way,
when the node receiving the lexical item analyzes it, it performs the rewriting
as [V ]1 or [V ]2. On the other hand, the verb should bear an explicit mark of the
type of complement it needs at the right. In the structures we are working with,
it is always a NP , but it could be a PP or AdvP . This syntactical constraint is
enclosed in brackets after V . Therefore, the final form of the categorial symbol
V is [V (#)]{1,2}, where the super index mean the agreement with the subject
and the symbol # stands for the syntactical structure the verb asks for. In our
case, (#) will be always NP .

Moreover, in order to fulfill the agreement with the verb, [N ] has to be
recognized with the same parameters than the verb, {1, 2}. On the other hand,
for being accomplished the agreement between the forms inside the phrase, it
has to be marked with s (singular) or p (plural). Therefore, the final form for the
categorial symbol [NP ] is [NP ]{1,2}

{s,p}. For distinguishing the article “a” from the
article “the”, the feature [ART ] will be [ART ]s for “a”, and [ART ] for “the”,
where the absence of any symbol means it works for both singular and plural.
If the agreement is not accomplished inside NP or in the NP at the left of the
verb and V , then the sentence will not be recognized. No additional information
is required for [ADJ ], which has just one form in English.
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For delimiting the phrases as the gathering of several elements belonging to
Σ and sentences as the gathering of phrases, we introduce a set of labelers, B,
which are able to identify different linguistic structures, isolate and classify them.

Finally, in order to perform both types of operations two different sets of
rules are considered: N for rewriting and β for labeling. N is an application of Σ
in V . β is a packer of non-terminal symbols into phrases. When a string over Σ is
labeled by β, then the symbols of internal agreement do not appear any more, and
the marks of agreement with other phrases take an external position. For example
when [ART ]s[N ]2s becomes [NP ], then s, which is important for the coherence
of the phrase, is deleted, and 2 goes to the external label [ [ART ] [N ] ]2NP .

With the elements we have just explained, a NEP for sentence analysis can
be defined as follows:

Definition 1
Γ = (V,Σ,B,N1, .., Ni, G)

where V is the input vocabulary, Σ is the output vocabulary, B is a set of labelers,
Ni = (Mi, βi, Ai, P Ii, POi) are the processors of the network, with Mi the set of
the evolution rewriting rules of every node, βi the set of evolution labeling rules,
Ai the set of strings over V in the initial configuration, PIi the input filter over
V ∪Σ and POi the output filter over V ∪Σ. G is the graph.
i = 5 for the sentences we are dealing with, NP V NP , and the methodological
options explained above.

The computation works like in a regular NEP, combining evolutionary steps
and communication steps. In an evolutionary step both a rewriting and labeling
rule can be applied to the same string. While the system is in an evolutionary
step, the initial node is reading the new string, and when the system is a com-
municating step, the node N0 sends the symbol read to the other nodes, in a
way that, two or more operations can be made in the system at the same time.
We remark that, in communication steps, a string that has been already sent
cannot be sent again if an evolutionary rule is not applied in it.

The system stops when no string is N0 to be read, no rule of evolution can be
applied and no evolutionary step can be performed. The string which has been
processed will be correct if, when the system stops, a string with the label [ ]O
is placed in the output node N4.

4 An Example

In this section, a NEP will be implemented for the recognition of sentences
NP V NP , in this case, it will be the string Your words have a horrible
resonance. As explained in the last section, the number of nodes of the NEP is
5, being the structure as follows:

Γ = (V,Σ,B,N1, N2, N3, N4, N5, G)
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where:
V = {Your, words, have, a, horrible, resonance}

Σ = { [ADJ ], [ART ], [N ], [V (NP )] }

B = { [ ]NP , [ ]O}

N0 = (∅, ∅, {your}, V +, V +)

N1 = (M1, ∅, ∅, {a, your, horrible}, {[ART ], [ADJ ]})

M1 = {a→ [ART ]s, {your, horrible} → [ADJ ]}

N2 = (M2, β2, ∅, {words, resonance, [ART ], [ADJ ]}, {[ ]NP })

M2 = {words→ [N ]1p, resonance→ [N ]2s}

β2 ={[ADJ ][N ]1p→ [ [ADJ ][N ] ]1NP , [ART ]s[ADJ ][N ]s→ [ [ART ][ADJ ][N ] ]2NP }

N3 = (M3, ∅, ∅, {have} , {[V (NP )]})

M3 = {have→ [V (NP )]1}

N4 = (∅, β4, ∅, {[ ]NP , [V (NP )]}, ∅)

β4 = {[ ]1NP [V (NP )]1 [ ]NP → [ [ ]1NP [V (NP )]1 [ ]NP ]O}

The development of the computation is the following:

Initial state C0

– In C0, N0 reads the word “your” and the computation starts.

Communication step C0 � C1

– The reading node N0 sends the first string, “your”, to every node. But just
N1 has it in the input filter, so it is the only node receiving it.

Evolutionary step C1 =⇒ C2

– The second lexical item “words” is read by N0.
– N1 applies the rule your→ [ADJ ].

Communication step C2 � C3

– N0 sends “words” and N2 accepts it.
– N1 sends [ADJ ] and only N2 accepts it.
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Evolutionary step C3 =⇒ C4

– The item “have” is read by N0.
– N2 applies the rule words→ [N ]1p
– N2 can apply then the rule [ADJ ][N ]1p → [ [ADJ ][N ] ]1NP

Communication step C4 � C5

– The item “have” is send by N0 and accepted by N3.
– N2 sends [ [ADJ ][N ] ]1NP , which is accepted by N4, the only one able to

accept labeled strings.

Evolutionary step C5 =⇒ C6

– N0 reads “a”.
– N3 applies the rule have→ [V (NP )]1.

Communication step C6 � C7

– N0 sends “a”. N1 accepts it.
– N3 sends [V (NP )]1 to every node. N4 is the only one that accepts it.

Evolutionary step C7 =⇒ C8

– N0 reads the symbol “horrible”.
– N1 applies the rule a→ [ART ]s.

Communication step C8 � C9

– N0 sends the lexical item “horrible”, which gos to N1.
– N1 sends [ART ]s and N2 accepts it.

Evolutionary step C9 =⇒ C10

– N0 reads the item “resonance”.
– N1 applies the rule horrible→ [ADJ ].

Communication step C10 � C11

– N0 sends the terminal symbol “resonance”, and N2 accepts it.
– N1 sends [ADJ ] and N2 accepts it.

Evolutionary step C11 =⇒ C12

– N0 has nothing to read. It stops
– N2 applies the rule ressonance→ [N ]2s.
– N2 applies the rule [ART ]s[ADJ ][N ]2s → [ [ART ][ADJ ][N ] ]2NP .

Communication step C12 � C13

– N2 sends the phrase [ [ART ][ADJ ][N ] ]NP and N4 accepts it.

Evolutionary step C13 =⇒ C14

– N4 applies the rule [ ]1NP [V (NP )]1 [ ]NP → [ [ ]1NP [V (NP )]1 [ ]NP ]O.

After this step, there is nothing to read, and neither communication nor
evolutionary transition can be applied. Therefore, the system stops. The node N4

has a structure labeled with [ ]O, what means that a string has been recognized
and it is correct.
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5 Final Remarks

The paper presents an implementation of NEPs for the recognition of sentences
of natural language. The construct is interesting because it presents a system
with several nodes, each one of them is specialized in the analysis of different
syntactic patterns. We think the model fits with the quite spread cognitive theory
of modularity and communication between modules.

The idea of a computational approach to modular syntax is quite new. Sev-
eral parallelisms have been highlighted between Grammar Systems and NEPs.
However, researchers in the field of grammar systems theory have not yet im-
plemented any concrete parser to analyze natural language strings, even though
general and promising approaches relating grammar systems to natural language
processing and linguistics have been proposed in [12, 23, 22].

An important feature of the system is that it provides a complete sentence
analysis in a linear way, avoiding trees, what is more consistent with linguistic
intuition of speakers.

The work for the future should be oriented to the implementation of NEPs
for carrying out more complex tasks, like parsing of different sentence struc-
tures as well as complex syntactic pieces. That work will require more complex
architectures and the improvement of the parallelism of the system.
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Abstract. Starting from an arbitrary evolutionary algorithm, we con-
struct an eco-grammar system that simulates the EA’s behavior. There
are only several practical applications of eco-grammar systems and our
approach tries to bring a new light in this field. We believe that our
research opens a new perspective also for evolutionary algorithms that
can benefit from the theoretical results obtained in the framework of
eco-grammar systems.
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gorithms.

1 Introduction

The history of evolutionary computing goes back to the 1960’s, with the introduc-
tion of ideas and techniques such as genetic algorithms, evolutionary strategies
and evolutionary programming [5].

An Evolutionary Algorithm (EA) [2] is a computational model inspired by
the Darwinian evolutionist theory. In nature the most adapted organisms have
better chances to survive, to reproduce and to have offspring. Computational
evolutionary algorithms maintain a population of structures that evolve accord-
ing to the rules of recombination, mutation and selection. Although simplistic
from a biologist’s point of view, these algorithms are sufficiently complex to
provide robust and powerful adaptive search mechanisms.

The notion of an Eco-grammar System (EG System) was introduced in 1993
[2]. Eco-grammars model the interactions between individuals and the environ-
ment in “living” systems. Both the environment and the agents evolve. The
environment evolves independently of the agents but the agents depends on the
environment, they are able to sense and to make changes to the environment.
This model captures a lot of life-like features as birth and death of agents, change
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of seasons, overpopulation, pollution, stagnation, cyclic evolution, immigration,
hibernation, carnivorous animals, and so on and so forth (see [3]).

The aim of this paper is to try to connect the two models mentioned above,
eco-grammar systems from formal language theory, and evolutionary algorithms
from their practical perspective. Starting from an arbitrary evolutionary algo-
rithm, we construct an eco-grammar system that simulates the EA’s behavior.
Our work was inspired by an application presented in [8] where eco-grammar
systems are used in solving and modelling control strategies problems.

Our motivation for connecting these two models is that on one hand for
evolutionary algorithms theoretical basis can explain only partially the empir-
ical results from numerous applications and on the other hand much of the
research about eco-grammar systems is theoretical and there are few practical
applications (see [4], [11], [7] and [8]). We believe that our research opens a
new perspective for evolutionary algorithms that can benefit by the theoretical
results obtained in the framework of eco-grammar systems. Also eco-grammar
systems can take inspiration from applications using evolutionary algorithm for
their theoretical research.

2 Eco-grammar Systems

Before introducing the formal definition of an EG system, we present some basic
notations:

An alphabet is a finite and nonempty set of symbols. Any sequence of symbols
from an alphabet V is called word over V . The set of all words over V is denoted
by V ∗ and the empty word is denoted by λ. Further, V + = V \{λ}. The number
of occurrences of a symbol a ∈ V in a word w ∈ V ∗ is denoted as (w)#a and the
length of w is denoted as | w | . The cardinality of a set S is denoted as card(S).

A Chomsky grammar is a quadruple G = (N, T, S, P ), where N is the symbol
alphabet, T is the terminal alphabet, S ∈ N is the axiom, and P is the (finite)
set of rewriting rules. The rules are presented in the form u → v and used in
derivations as follows: we write x =⇒ y if x = x1ux2, y = x1vx2 and u → v is
a rule in P (one occurrence of u in x is replaced by v and the obtained string
is y). Denoting by =⇒∗ the reflexive and transitive closure of =⇒, the language
generated by G is defined by:

L(G) = {x ∈ T ∗ | S =⇒∗ x}.
The families of languages generated by rules of the form u → v where u ∈ N

and v ∈ (N ∪ T )∗ are called context-free grammars and denoted by CF .
Similarly a 0L system (an interactionless Lindenmayer system) is a triple

G = (V, ω, P ) as above, with context-free rules in P , and with complete P (for
each a ∈ V there is a rule a → x ∈ P ). The derivation is defined in a parallel
way: x =⇒ y if x = a1a2...an, y = z1z2...zn, for ai ∈ V and ai → zi ∈ P,
1 ≤ i ≤ n.

For more information regarding the Formal Languages definitions, notations
and properties, the reader is referred to [10].
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Fig. 1. Description of an eco-grammar system

The interested reader can find an introductory article about eco-grammar
systems (EGs) in [2]. For an easier understanding of the formal definitions we
present an intuitive image of the system in (Figure 1).

We observe that double arrows stand for parallel rewriting 0L− rules while
simple arrows are used for CF−rules.

Definition 1. (eco-grammar system) An eco-grammar system of degree n is a
(n + 1)-tuple Σ = (E, A1, . . . , An), where E = (VE , PE) is the environment that
uses VE as a finite alphabet, and PE as a finite set of 0L rewriting rules over
VE; Ai, 1 ≤ i ≤ n, are agents defined by Ai = (Vi, Pi, Ri, ϕi, ψi) where Vi is a
finite alphabet, Pi a finite set of 0L rewriting rules over Vi, Ri is a finite set
of simple CF−rewriting rules over the environment, Ri ∈ V +

E × V ∗
E , ϕi, ψi are

computable functions that select production sets according to the environment
state, respectively the agent state: ϕi : V ∗

E −→ 2Pi , ψi : V +
i −→ 2Ri .

Until now, the definition provides only the description of the eco-grammar
system’s components. In order to describe the dynamic evolution of EGs, we
give the definitions of configuration, derivation and language generated.
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Definition 2. (configuration) A configuration of an eco-grammar system is a
tuple σ = (ωE , ω1, . . . , ωn), ωi ∈ V ∗

i , i ∈ E ∪ {1, . . . , n} ωE being a string that
represents the environment state and ω1, . . . , ωn are strings that represent the
agents’ state.

According to the configuration evolution we define the direct derivation of a
configuration in an eco-grammar system.

Definition 3. (direct derivation) Considering an eco-grammar system Σ and
two configurations of c denoted by σ = (ωE , ω1, . . . , ωn) and
σ′ = (ω′

E , ω′
1, . . . , ω

′
n), we say that σ directly derives σ′ written as σ =⇒Σ σ′

iff

– ωi =⇒ ω′
i according to the selected set of rules for the i-th agent by the ϕi

mapping,
– ωE = z1x1z2x2, . . . , zmxmzm+1 and ω′

E = z′1y1z
′
2y2, . . . , z

′
mymz′m+1, such

that z1x1z2x2, . . . , zmxmzm+1 =⇒ z1y1z2y2, . . . , zmymzm+1 as the result of
parallel applying the rewriting rules selected by the ψi mappings for all agents
and z1z2, . . . , zm+1 =⇒ z′1z

′
2, . . . , z

′
m+1 according to the environment’s rules

PE.

The transitive and reflexive closure of =⇒Σ is denoted by =⇒+
Σ , =⇒∗

Σ re-
spectively.

The whole “life” of the system is governed by a universal clock, dividing the
time in unit intervals: in every time unit the agents act on the environment then
the evolution rules rewrite, in parallel, all the remained symbols in the strings
describing the environment and the agents. Thus, the action has priority over
evolution.

Definition 4. (the generated language) The language generated by the environ-
ment of an eco-grammar system Σ, starting from the initial configuration σ0 is
defined as

LE(Σ, σ0) =
{

ωE ∈ V ∗
E | σj = (ωE , ω1, ..., ωn),

σ0 =⇒Σ σ1 =⇒Σ .... =⇒Σ σj , j ≥ 0

}

3 Evolutionary Algorithms

EAs, mainly probabilistic searching techniques, represent several convergent re-
search areas. Despite the fact that different sub-domains of EAs, Evolutionary
Strategies, Genetic Algorithms, Evolutionary Programming, Genetic Program-
ming, etc. appeared as separate research domains they all have basically a com-
mon structure and common components. A searching space for a given problem,
a coding scheme representing solutions for a given problem, a fitness function,
operators to produce offspring and to select a new generation are the main
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components of EAs. We can find a very good theory overview for Evolutionary
Algorithms in [1]. Briefly, an Evolutionary Algorithm may be defined as a 7-tuple

EA = (I, Φ, µ, λ, Ω, s, StopCondition) (1)

where:

– I represents the set of the searching space instances usually called indi-
viduals. Sometimes associated with individuals we can keep useful infor-
mation for genetic operators. It is usual to associate to each individual its
fitness value, using the following notation: 〈−→i q(t), Φ(

−→
i q(t))〉, where

−→
i q(t)

denotes the vectorial representation of the chromosome of q-th individual
in the generation t and Φ(

−→
i q(t)) corresponds to the fitness value associ-

ated to that individual. So, we consider I = {〈−→i q(t), Φ(
−→
i q(t))〉 | −→i q(t) ∈

V ector ∧ Φ(
−→
i q(t)) ∈ F ∧ q ∈ N ∧ 1 ≤ q ≤ µ + λ ∧ t ∈ N ∧ t ≥ 0}.

– Φ : I → F is a fitness function associated to individuals, where F is a finite
ordered set corresponding to the fitness function values.

– µ denotes the number of parents.
– λ is the number of offspring inside the population.
– Ω is a set of genetic operators which applied to the individuals of one gen-

eration, called parents, produce new λ individuals called offspring.
– s is the selection operator that changes the number of individuals from par-

ents and offspring producing the next generation of parents
(s : Iµ × Iλ → Iµ). There are variants of EAs where after one generation
the parents are not needed anymore and in this case s selects only from the
children population (s : Iλ → Iµ).

– StopCondition : Fµ ×N →Boolean. represents the stop criteria which may
be “Stop when a good enough value was reached by an individual fitness
function”, “Stop after a certain number of generations”, “Stop after a max-
imum time available for computations”, etc.

The structure of an Evolutionary Algorithm is:
1 gen:=0;
2 Initialization process (n, µ, L);
3 Evaluate P(0):=

{〈−→i 1(0), Φ(
−→
i 1(0))〉, . . . , 〈−→i µ(0), Φ(

−→
i µ(0))〉};

4 do while not(StopCondition(Φ(
−→
i 1(gen)), . . . , Φ(

−→
i µ(gen)), gen))

5 Apply genetic operators;
6 Evaluate (P(gen))→ P ′(gen)=

{〈−→i ′
1(gen), Φ(

−→
i ′

1(gen))〉, . . . , 〈−→i ′
λ(gen), Φ(

−→
i ′

λ(gen))〉};
7 Select the next generation P(gen+1):=s(P(gen),P ′(gen));
8 gen := gen+1;

end do;

Fig. 2. Description of an Evolutionary Algorithm
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In Figure 2 we present a general description of EAs, where gen is a nu-
merical variable that indicates the current number of generation, P (gen) rep-
resents the set of µ individuals that are potential parents in generation gen
and P ’(gen) is the set of λ offspring we get from the application of genetic
operators to individuals from P (gen). Depending on the coding chosen for the
EA each gene belongs to a certain data type. Let L = (C1, C2, . . . , Cn) being
the list of the sets of genes values. Without loss of generality we consider each
Ci, 1 ≤ i ≤ n, a finite and discrete set of values of a given type, such that
all values of genes in the position i of a chromosome of an individual are of
type Ci.

In step 2 of the algorithm the initialization process(n, µ, L), defined on
N × N × C1 × C2 × . . . × Cn with values on Iµ, initializes with random values
the chromosomes. Recall that n ∈ N is the number of genes of the chromosomes
and µ is the number of offspring.

Because of the lack of theoretical results able to explain which are the con-
ditions in what EAs perform better, many experimental results try to give us
some hints about best practice while implementing a particular EA.

De Jong proposed according to [6] a method to compare the performances
of two different strategies. He defined the on-line and off-line performances of
a strategy as the average of all fitness functions, respectively the average of
maximum fitness function until a given moment. The only conclusion is that
we need a large enough number of runs to compute the average results and to
compare these average results for different algorithms. Also, De Jong proposed
five real valued test functions called F1, F2, . . . , F5 defined on intervals included
in R5 that can be used to compare the performances of evolutionary algorithms.
Every function is considered representative for a certain type of optimization
problem. Soon, the number of test functions increased and today we can choose
from a very extended set of test functions.

4 Simulating an Evolutionary Algorithm with an
Eco-grammar System

In Table 1 we show the associations of concepts from EAs and EG systems that
we use for the simulation.

Given an arbitrary EA = (I, Φ, µ, λ, Ω, s, StopCondition) defined as in (1)
and with a description like the one presented in Figure 2, we define an EG system
with µ + λ agents, where each agent represents one of the µ + λ individuals of
a generation. Recall that n represents the number of genes, Ci, 1 ≤ i ≤ n, are
sets of genes values, and F is the set of fitness function values.

The string representing the environment´s sate of the EG system that we
define has the following structure:

ωE = 〈h11 , h21 , ..., hn1〉1f1, Status1...〈h1i
, h2i

, ..., hni
〉ifi, Statusi...

...〈h1(µ+λ) , h2(µ+λ) , ..., hn(µ+λ)〉(µ+λ)f(µ+λ), Status(µ+λ),
ControlSymbolGenerationgen
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Table 1. Associations between entities in EAs and EGs

Concept Entity of EA Entity of EG system

Individual Vector
−→
i x(gen) String ωx, state

of agent Ax

Evolutive Process Algorithm of Figure 2 Production set PE and
a symbol in ωE

Initial Population Initialization process Initialization process
embedded in ϕx

Evaluation Function φ Function φ,
embedded in ψx

Termination Function StopCondition Function StopCondition
embedded in ϕx

Number of generation Variable gen Number of symbols
Generation in ωE

Genetic operators Set Ω of operators Set Ω of operators
embedded in ϕx

Selection operator Function s Function s
embedded in ϕx

Fitness function Function φ Function φ
embedded in ψx

where:

– 〈h1i
, h2i

, ..., hni
〉i is the string representing the chromosome of the i-th indi-

vidual. Because the chromosome of all individuals are kept in ωE , subindex
i is needed to address a particular individual.

– hjs ∈ Cs represents the gene value that is in the j-th position of the chro-
mosome of the s-th individual, 1 ≤ s ≤ n.

– fi, Statusi represents the fitness value fi ∈ F of the i-th individual with
status Statusi. Because the fitness values of all individuals are kept in ωE ,
subindex i is needed to address the fitness value of a particular individual.

– Statusi is one character in the environment that codes the status of an
individual; if it is equal to P then the i-th individual has been selected as
potential parent, if Statusi = O it is an offspring and if Statusi = I it is
inactive.

– ControlSymbol ∈ VE , together with the environment productions rules PE

simulate the control sequence described by Figure 2. The VE alphabet’s sym-
bols like GeneticProcess, Selection, NewIteration, CheckTermination,
Termination, etc. are used in ωE to indicate the step of the algorithm.
The productions in PE control the sequence in which these operations have
to take place.
For example, according to Figure ref fig:algorithm1 after applying genetic op-
erators and getting offspring (step 5), evaluation of their fitness value has to
be performed (step 6), so GeneticProcess → OffSpringEvaluation ∈ PE .
The end of the iteration process is controlled in the following way: when the
symbol CheckTermination is present in the environment the stop condition
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is checked (step 4) and if it is satisfied then the symbol is rewritten for
Termination, if not it is rewritten to NewIteration and simulation goes on.
The environment and the agents are left in states for which no production
from PE can be applied and mappings ϕi and ψi assign the empty set of
productions. In this way the EG system does not evolve any more.

– The number of occurrences of the symbol Generation ∈ VE in ωE has to be
equal to the numeric value of the variable gen considered in the algorithm.
In this way each time the number of generation has to be increased (step 8)
a new symbol Generation is introduced in ωE . And the initialization in the
algorithm of the variable gen with the value zero (step 1) is simulated by the
non occurrence of the variable Generation in the initial configuration of the
EG system, which is defined in the following way: σ0 = (ωE , ω1, ..., ωµ+λ),
where:
• ωE = Ind1 min1,I ...Indi mini,I ...Ind(µ+λ) min(µ+λ),I Initialization,
• Indi ∈ VE , 1 ≤ i ≤ µ + λ,
• mini,I ∈ VE , min ∈ F, 1 ≤ i ≤ µ + λ, means that i-th agent starts with

an inactive status and with an initial fitness value equal to the minimum
value that fitness function can assign to individuals,

• ωi = Inactive, for 1 ≤ i ≤ µ + λ, because all the agents are initialized
in an inactive state.

With respect to the strings that represent the agents’ states have the same
coding used for the chromosome of individuals of the EA given. One string
describes a vector of genes using brackets 〈〉 as delimiter symbols and separating
genes by commas. And even more complicate coding, like trees, can be model
with strings using appropriate balanced brackets. So, the state of the i-th agent
can be:

– ωi = 〈h1, h2, ..., hn〉StatusSymbol where:
• 〈h1, h2, ..., hn〉 represents the string corresponding to the chromosome of

the i-th individual.
• hj ∈ Cj is the gene value that is in the j-th position of the chromosome

of an individual.
• StatusSymbol ∈ {O, P, S,R} means respectively that the i-th individual

is an offspring, a potential parent, has been selected for next generation
or has been rejected for next generation.

– ω1 = αStop with (α = λ ∨ α = 〈h1, h2, ..., hn〉) what means that the algo-
rithm´s stop condition is satisfied.

– ωi = Inactive what means that the i-th individual is in inactive state.

With respect to the mappings ϕi and ψi, 1 ≤ i ≤ µ + λ, the first one embeds
the process of random initialization of individuals (step 1), the checking of the
stop condition (step 4) and the application of functions from Ω (step 5) and
function s (step 7). For mappings ϕi being able to perform step 4, 5 and 7 they
need to know the fitness values of the individuals in the population, so these
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values are kept in ωE during the whole evolutive process. For the simulation
of the step 5 the mappings ϕi also need to know the chromosomes of all the
individuals with the status of potential parents. And for step 7 besides the
chromosomes of the parents, the chromosomes of the offspring are needed. So
before performing this operations, the corresponding chromosomes are copied in
ωE by the mappings ψi. Mappings ψi are also in charge of embedding the fitness
function Φ performing the evaluations corresponding to the steps 3 and 6 of the
algorithm.

For the definition of EG system we give we are not interested in the language
generated by the environment but just in the string ωi corresponding to the
state of the i-th agent, 1 ≤ i ≤ µ + λ, with the best fitness value at the end of
the evolution process when the stop condition is satisfied, that we call solution:

(solution = ωi) ⇐⇒ (ωi ∈ V ∗
i )∧

(σ0 =⇒Σ σ1 =⇒Σ .... =⇒Σ σj) ∧ (j ≥ 0)∧
∧σj = (ind1f1, Status1...indifi, Statusi...ind(µ+λ)f(µ+λ), Status(µ+λ)

TerminationGenerationgen, ω1, ..., ωx, ..., ωµ+λ)∧
StopCondition

(
fs1

, ..., fi, ..., fsµ
, gen

) ≡ true∧
∧(for all k : 1 ≤ k ≤ µ ∧ fsksk,P

is a substring of ωE ∧ fx ≥ fsk
)

5 Conclusions and Future Work

In this paper we connect two models, eco-grammar systems and evolutionary
algorithms. Starting from an arbitrary evolutionary algorithm we can define an
eco-grammar system that simulates the EA’s behavior. In this way we open the
possibility to use eco-grammar systems not just as language generators but also
as searching problem solvers. The range of possible applications is huge, we can
mention only several including Location Allocation Problem (an NP-complete
problem), game playing, face recognition, financial time-series prediction, etc.
We propose to use eco-grammar systems for the mentioned class of problems
and for future work we will focus on theoretical aspects regarding the alphabet,
the control parameters and appropriate operators for evolutionary algorithms.
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Abstract. Accepting Hybrid Networks of Evolutionary Processors are
bio-inspired, massively parallel computing models that have been used
succesfully in characterizing several usual complexity classes and also in
solving efficiently decision problems. However, this model does not seem
close to the usual algorithms, used in practice, since, in general, it lacks
the property of stopping on every input. We add new features in order to
construct a model that has this property, and also, is able to characterize
uniformly CoNP, issue that was not solved in the framework of regular
AHNEPs. This new model is called Timed AHNEPs (TAHNEP). We
continue by adressing the topic of problem solving by means of this new
defined model. Finally, we propose a tehnique that can be used in the
design of algorithms as efficient as possible for a given problem; this
tehnique consists in defining the notion of Problem Solver, a model that
extends the previously defined TAHNEP.

1 Introduction

In this paper we propose a modified version of accepting hybrid networks of
evolutionary processors, designed in order to provide an accepting method that
seems closer to the regular algorithmic point of view.

As stated in [3], informally, an algorithm is any well-defined computational
procedure that takes some value, or set of values, as input and produces, in a finite
time, some value, or set of values, as output. An algorithm is thus a finite sequence
of computational steps that transform the input into the output. It can also be
seen as a tool for solving a well-specified computational problem. The statement
of the problem specifies in general terms the desired input/output relationship.
The algorithm describes a specific computational procedure for achieving that
input/output relationship. As in usual complexity theory, we assume that we
use algorithms to solve language membership decison problems: given as input
a mechanism defining a language L and a string w we have to decide, using an
algorithm, whether or not w ∈ L.

Networks of evolutionary processors are, as they were defined in [1], a com-
puting model that has its source of inspiration in two points. First they are
inspired by a basic architecture for parallel and distributed symbolic processing,

J. Mira and J.R. Álvarez (Eds.): IWINAC 2005, LNCS 3562, pp. 122–132, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Timed Accepting Hybrid Networks of Evolutionary Processors 123

related to the Connection Machine as well as the Logic Flow paradigm, con-
sisting of several processors, each of them being placed in a node of a virtual
complete graph, which are able to handle data associated with the respective
node. Each node processor acts on the local data in accordance with some pre-
defined rules, and then local data becomes a mobile agent which can navigate
in the network following a given protocol. Only such data can be communicated
which can pass a filtering process. This filtering process may require to satisfy
some conditions imposed by the sending processor, by the receiving processor or
by both of them. All the nodes send simultaneously their data and the receiving
nodes handle also simultaneously all the arriving messages. The second point of
inspiration the cells’ evolution. These are represented by words which describe
their DNA sequences. Informally, at any moment of time, the evolutionary sys-
tem is described by a collection of words, where each word represents one cell.
Cells belong to species and their community evolves according to mutations and
division which are defined by operations on words. Only those cells are accepted
as surviving (correct) ones which are represented by a word in a given set of
words, called the genotype space of the species. This feature parallels with the
natural process of evolution.

These concepts were put together in the definition of the networks of evo-
lutionary processors: the predefined rules of the nodes in the complete graph
are evolutionary rules, namely point mutations in the DNA sequence (insertion,
substitution, deletion). Each node has exactly one type of rule associated with
it, but, in designing a network one can use different types of nodes; such a net-
work is called hybrid. Although the process defined in our architecture is not
an evolutionary process in a strict Darwinian sense, the appliance of an evolu-
tionary rule can be seen as a mutation, and the filltering process can be seen as
selection. We can state, consequently, that networks of evolutionary processors
are bio-inspired models.

We focus on the way networks of evolutionary processors are used in solv-
ing membership decision problems. For this reason there were defined accepting
networks of evolutionary processors (AHNEPs, see [8]). Such a network contains
two distinguished nodes: the input and the output node. At the begining of the
computation the only node that contains local data is the input node, and this
local data consists of the string that we want to decide wether it is a member of
a given language or not. Then, the application of evolutionary rules and commu-
nication are performed alternatively, until the output node receives some data,
or until all the nodes should process in a computational step exactly the same
data that was processed in the precedent step. In the first case the computation
is succesfull, and the input string is accepted, but in the second one, and also in
the case of an infinite compuation, the input string is rejected. AHNEPs, defined
in this way, were used in problem-solving ([1, 5]), in providing accepting tools for
classes in the Chomsky hierarchy[6], and in characterizing the usual complexity
classes as P,NP, PSPACE, but not CoNP (see [7]).

However, the way AHNEPs are defined does not capture the algorithmic
point of view, since the rejection answer is not necessarily provided after a finite
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number of steps. In order to eliminate such drawbacks, we propose a new ver-
sion of AHNEPs: Timed Accepting Hybrid Networks of Evolutionary Processors
(TAHNEP), which consist in a classical AHNEP, a clock, and an accepting-mode
bit. The clock is used for keeping track of the number of steps performed by an
AHNEP, and stopping it when it reaches a certain value, while the accepting-
mode bit is used in order to permit elegant characterizations of larger classes of
languages.

The paper is structured in the following way: first we provide the basic defini-
tion for TAHNEPs as an extention of the definitions already known for AHNEPs.
Then we present several time complexity results for the newly defined models,
and, finally we propose a formalization for the way TAHNEPs can be used more
efficiently in problem solving.

2 Basic Definitions

We start by briefly reminding the basic and most important definition for AH-
NEPs. For a more accurate presentation we refer to [2]. First, we recall that for
two disjoint and nonempty subsets P and F of an alphabet V and a word w
over V , we define the predicates:

• ϕ(1)(w;P, F ) ≡ P ⊆ alph(w) ∧ F ∩ alph(w) = ∅
• ϕ(2)(w;P, F ) ≡ alph(w) ⊆ P
• ϕ(3)(w;P, F ) ≡ P ⊆ alph(w) ∧ F �⊆ alph(w)
• ϕ(4)(w;P, F ) ≡ alph(w) ∩ P �= ∅ ∧ F ∩ alph(w) = ∅.

An evolutionary processor over V is a tuple (M,PI, FI, PO, FO), where:

– Either M is a set of substitution or deletion or insertion rules over the alphabet
V . Formally: (M ⊆ SubV ) or (M ⊆ DelV ) or (M ⊆ InsV ). The set M repre-
sents the set of evolutionary rules of the processor. As one can see, a processor
is “specialized” in one evolutionary operation, only.
– PI, FI ⊆ V are the input permitting/forbidding contexts of the processor,
while PO,FO ⊆ V are the output permitting/forbidding contexts of the pro-
cessor. Informally, the premitting input/output contexts are the set of symbols
that should be present in a string, when it enters/leaves the processor, while the
forbidding contexts are the set of symbols that should not be present in a string
in order to enter/leave the processor.

We denote the set of evolutionary processors over V by EPV . An accepting
hybrid network of evolutionary processors (AHNEP for short) is a 7-tuple Γ =
(V,U,G,N, α, β, xI , xO), where:

• V and U are the input and network alphabets, respectively, V ⊆ U .
• item G = (XG, EG) is an undirected graph with the set of vertices XG and the
set of edges EG. G is called the underlying graph of the network. In this paper, we
consider complete AHNEPs, i.e. AHNEPs having a complete underlying graph
denoted by Kn, where n is the number of vertices.
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• N : XG −→ EPU is a mapping which associates with each node x ∈ XG the
evolutionary processor N(x) = (Mx, P Ix, F Ix, POx, FOx).
• α : XG −→ {∗, l, r}; α(x) gives the action mode of the rules of node x on the
words existing in that node. Informally, this indicates if the evolutionary rules
of the processor are to be applied at the leftmost end of the string, for α = l, at
the rightmost end of the string, for α = r, or at any of its position, for α = ∗.
• β : XG −→ {(1), (2), (3), (4)} defines the type of the input/output filters of a
node. More precisely, for every node, x ∈ XG, the following filters are defined:

input filter: ρx(·) = ϕβ(x)(·;PIx, F Ix),
output filter: τx(·) = ϕβ(x)(·;POx, FOx).

That is, ρx(w) (resp. τx) indicates whether or not the word w can pass the input
(resp. output) filter of x. More generally, ρx(L) (resp. τx(L)) is the set of words
of L that can pass the input (resp. output) filter of x.
• xI and xO ∈ XG is the input node, and the output node, respectively, of the
AHNEP.

A configuration of an AHNEP Γ as above is a mapping C : XG −→ 2V ∗

which associates a set of words with every node of the graph. A configuration
may be understood as the sets of words which are present in any node at a
given moment. A configuration can change either by an evolutionary step or
by a communication step. When changing by an evolutionary step, the con-
figuration C ′ is obtained from the configuration C, written as C =⇒ C ′, iff
C ′(x) = M

α(x)
x (C(x)) for all x ∈ XG. The configuration C ′ is obtained in one

communication step from configuration C, written as C � C ′, iff C ′(x) =
(C(x)− τx(C(x))) ∪

⋃
{x,y}∈EG

(τy(C(y)) ∩ ρx(C(y))) for all x ∈ XG.
Let Γ be an AHNEP, the computation of Γ on the input word w ∈ V ∗ is a

sequence of configurations C
(w)
0 , C

(w)
1 , C

(w)
2 , . . ., where C

(w)
0 is the initial config-

uration of Γ defined by C
(w)
0 (xI) = w and C

(w)
0 (x) = ∅ for all x ∈ XG, x �= xI ,

C
(w)
2i =⇒ C

(w)
2i+1 and C

(w)
2i+1 � C

(w)
2i+2, for all i ≥ 0. Note that the two steps, evolu-

tionary and communication, are synchronized and they happen alternatively one
after another. By the previous definitions, each configuration C

(w)
i is uniquely

determined by the configuration C
(w)
i−1. Otherwise stated, each computation in

an AHNEP is deterministic. A computation as above immediately halts if one
of the following two conditions holds:

(i) After k steps, there exists a configuration in which the set of words existing
in the output node xO is non-empty. In this case, the computation is said to
be an accepting computation. Since evolution and communication steps are no
longer applied, we assume that C

(w)
n = C

(w)
k ,∀n > k.

(ii) There exist two consecutive identical configurations, with the property that
the set of words existing in the output node xO is empty.

In the aforementioned cases the computation is said to be finite. The language
accepted by Γ is:

L(Γ ) = {w ∈ V ∗ | the computation of Γ on w is an accepting one}.
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Remark 1. Since every computation in which a string enters the output node
is a succesfull one, and the further evolution of the network is not of interest,
one may assume, without loss of generality, that the output forbidding filter of
the output node contains the whole network alphabet. In the rest of the paper, all
the AHNEPs used verify this property.

We continue by defining the Timed Accepting Hybrid Networks of Evolution-
ary Processors. A TAHNEP is a triple T = (Γ, f, b), where Γ = (V,U,G,N,
α, β, xI , xO) is an AHNEP, f : V ∗ → N is a Turing computable function, called
clock, and b ∈ 0, 1 is a bit called the accepting-mode bit. The computation of a
TAHNEP T = (Γ, f, b) on the input word w is the (finite) sequence of configu-
rations of the AHNEP Γ : C

(w)
0 , C

(w)
1 , . . . , C

(w)
f(w). The language accepted by T is

defined as:

• if b = 1 then: L(T ) = {w ∈ V ∗ | C(w)
f(w)(xO) �= ∅}

• if b = 0 then: L(T ) = {w ∈ V ∗ | C(w)
f(w)(xO) = ∅}

Remark 2. If T = (Γ, f, b) is a TAHNEP, then Γ is a AHNEP that verifies the
property stated in Remark 1. In this conditions, it is immediate that for b = 1 we
have L(T ) = {w ∈ V ∗ | there exists k < f(w), C(w)

k (xO) �= ∅}, and, for b = 0
we have L(T ) = {w ∈ V ∗ | ∀k ≤ f(w), C(w)

k (xO) = ∅}

Intuitively we may think that a TAHNEP T = (Γ, f, b) is a triple: an AHNEP,
a Turing Machine and a bit. For an input string w we first compute f(w) on the
tape of the Turing Machine (by this we mean that on the tape there will exist
f(w) elements of 1, and the rest are blanks). Then we begin to use the AHNEP,
and at each step we delete an 1 from the tape of the Turing Machine. We stop
when no 1 is found on the tape. Finally, we check the accepting-mode bit, and
according to its value and C

(w)
f(w)(xO) we decide wether w is accepted or not.

We make a few a priori considerations on this model: the usage of the function
f , and the way it is implemented, makes this a hybrid definition from another
point of view- it uses both classical tools as the Turing Machines, and non-
conventional models like AHNEPs; moreover, the fact that every computation is
finite brings the model closer to the notion of algorithm. Also, since we presented
a simple way of implementing the clock and its interaction with the AHNEP,
and since this doesn’t affect the computation of the AHNEP, in the following
we will neglect the implementation of the clock, and we suppose that it exists,
works and it will signal corectly the AHNEP when to stop.

3 Complexity Aspects

In [8] there were given the defintions of some complexity measures for AHNEPs.
and the main result obtained was the following theorem; the reader is also re-
ferred to [4] for the classical time and space complexity classes defined on the
standard computing model of Turing machine.
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Theorem 1. [8] NP = PTimeAHNEP .

Remark 3. Recall that for an AHNEP Γ , the fact that L(Γ ) ∈ PTIMEAHNEP ,
expresses the existance of a polynomial g such that a succesfull computation
of Γ on a string x takes less than g(|x|) steps. Also, note that the strategy
used in constructing a Turing Machine that has the same behaviour as an AH-
NEP recognizing a language from PTIMEAHNEP , as it is stated in [8], was to
choose non-deterministicaly a path through the network, and then simulate, step
by step, the evolution of the input string along that path. The computation of
this Turing Machine accepts the input string when the output node contains a
string, and rejects it when the simulation lasted for more than g(|x|) evolutionary
steps.

In the case of a TAHNEP T = (Γ, f, b) the time complexity definitions are the
following: for the word x ∈ V ∗ we define the time complexity of the computation
on x as the number of steps that the TAHNEP makes having the word x as input,
TimeT (x) = f(x). Consequently, we define the time complexity of T as a partial
function from N to N, that verifies: TimeT (n) = max{f(x) | x ∈ L(T ), |x| = n}.
For a function g : N −→ N we define:

TimeTAHNEP (g(n)) = {L | L = L(T ) for a TAHNEP T =

(Γ, f, 1) with TimeT (n) ≤ g(n) for some n ≥ n0}.

Moreover, we write PTimeTAHNEP =
⋃
k≥0

TimeTAHNEP (nk).

Note that the above definitions were given for TAHNEPs with the accepting-
mode bit set to 1. Similar definitions are given for the case when the accepting-
mode bit set to 0. For a function f : N −→ N we define, as in the former
case:

CoTimeTAHNEP (g(n)) = {L | L = L(T ) for a TAHNEP T =

(Γ, f, 1) with TimeT (n) ≤ g(n) for some n ≥ n0}.

We define CoPTimeTAHNEP =
⋃
k≥0

CoTimeTAHNEP (nk).

We see that, if T = (Γ, f, 1) recognizes a language from TimeTAHNEP (g(n)),
we can deduce that f(x) ≤ g(n),∀x ∈ V ∗, |x| = n and ∀n ≥ n0. If g(n) = nk,
than it follows that f(x) ≤ nk,∀x ∈ V ∗, |x| = n,∀n ≥ n0. Concluding: all
the TAHNEPs generating languages contained in PTIMETAHNEP have the
following property: f(x) ≤ g(|x|),∀x ∈ V ∗, where g is a polynomial.

It is not hard to see that every language recognized by an TAHNEP that
verifies the above property, is in PTIMETAHNEP . For simplicity, we will call a
TAHNEP that verifies such a property polynomial.

We can prove a similar result for CoPTimeTAHNEP , i.e. a language L =
L(T ) is contained in CoPTimeTAHNEP if and only if the following are verified:
T = (Γ, f, 0) with f(x) ≤ g(|x|),∀x ∈ V ∗ and g is a polynomial.

We can now state the most important results of this paper.
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Theorem 2. PTimeTAHNEP = NP.

Proof. Let L = L(T ) be a language from PTIMETAHNEP , and T = (Γ, f, b).
As was explained in Remark 3, we can choose and simulate non-deterministicaly
each one of the possible evolutions of the input string x through the underlying
network of the AHNEP Γ . Since in this case we are interested only in the first
f(x) steps, and there exist a polynomial g such that f(x) ≤ g(|x|), we can state
that the Turing Machine must simulate, at most, the first g(|x|) steps from the
evolution of the input string. As it was proven in Theorem 1, the simulation
of such a step can be carried out in polynomial time. Consequently, the Turing
Machine will simulate all the f(x) ≤ g(|x|) steps in a polynomial time, and then
will stop. The computation will be succesfull if at the end of the simulation the
output node will contain one or more strings, and unsuccesfull otherwise. From
these it follows that L is the language accepted by a non-deterministic Turing
Machine working in polynomial time, and PTimeTAHNEP ⊆ NP.

To prove that NP ⊆ PTimeTAHNEP we also make use of Theorem 1. From
this theorem it follows that for L ∈ NP there exists an AHNEP Γ and a poly-
nomial g such that: x ∈ L if and only if x ∈ L(Γ ) and TimeΓ (x) ≤ g(|x|). From
this it follows that the TAHNEP T = (Γ, f, 1), where f(x) = g(|x|), accepts L.

From the above we have proven the theorem: PTimeTAHNEP = NP. �

We can consider that PTimeTAHNEP is the class of of languages that can be
efficiently recognized by means of TAHNEPs, with the accepting-mode bit set
to 1. In this setting, the above theorem proves that these languages are exactly
the ones contained in NP. Also, since every abstract problem can be related to
a decision problem (a language-membership problem), and shown to be at least
as hard as this one (see [4]), we have proven that the problems that cannot be
solved efficiently by non-deterministic Turing Machines are the same with those
that cannot be solved efficiently by TAHNEPs.

A similar theorem is stated for the case when the accepting-mode bit is set
to 0.

Theorem 3. CoPTimeTAHNEP = CoNP.

Proof. Let L be a language from CoPTimeTAHNEP , and L is accepted by a
polynomial TAHNEP T = (Γ, f, 0). The complementary of this language CoL

is the set V ∗ − {w ∈ V ∗ | C
(w)
f(w)(xO) = ∅} (C(w)

f(w) is a configuration of Γ ,
and xO is its output node). From this, and Remark 2, its easy to see that
CoL = {w ∈ V ∗ | C

(w)
f(w)(xO) �= ∅}, and, consequently: CoL = L(T ′), where

T ′ = (Γ, f, 1) is a polynomial TAHNEP. It follows that CoL ∈ PTimeTAHNEP ,
and, by Theorem 2, we have CoL ∈ NP. Therefore, L ∈ CoNP.

The reversal holds as well: let L ∈ CoNP. By Theorem 2, it follows that
CoL is in NP, and, consequently, it is in PTimeTAHNEP . So there exists a
polynomial TAHNEP T = (Γ, f, 1) such that L(T ) = CoL. We obtain that
CoL = {w ∈ V ∗ | C

(w)
f(w)(xO) �= ∅} (where the configuration in the formula is

with respect to Γ , and xO is its output node). Finally, by Remark 2, we get:
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L = {w ∈ V ∗ | C
(w)
f(w)(xO) = ∅}, and as a consequence: L = L(T ′), where

T ′ = (Γ, f, 0). Note that T ′ is polynomial, since T is polynomial, and they have
the same clock function.

Hence: L ∈ CoPTimeTAHNEP , which concludes our proof. �

Theorems 2 and 3 and their proofs are interesting in the following context:
they provide a common framework for solving both problems from NP and from
CoNP. For example, suppose that we want to solve the membership problem
regarding the language L.
– If L ∈ NP, using the proofs of Theorems 1 and 3, and Remark 3, we can
construct a polynomial TAHNEP T = (Γ, f, 1) that accepts L.
– If L ∈ CoNP, it results that CoL ∈ NP, and using the proofs of Theorems
1 and 3, and Remark 3, we can construct a polynomial TAHNEP T = (Γ, f, 1)
that accepts CoL. By Theorem 3 we obtain that (Γ, f, 0) accepts L.

As a conclusion of the above, note that both TAHNEPs for L and CoL are
using the same AHNEP and clock components, but the accepting mode is differ-
ent. In other words, we use the same algorithm for the both problems, the only
difference being the acceptance criterion. Consequently, it suffies to solve only the
membership problem for the languages in NP, and, then, by simply changing the
acceptance mode we have solved also the problems for the complement of these
languages. Following these considerations, we observe that CoPTimeTAHNEP

can be seen as the languages that can be recognized efficiently by TAHNEPs
with the accepting-mode bit set to 0. Moreover, for every language in this class,
there exists another language in PTimeTAHNEP whose recgnition requires the
same computational effort, and conversely; this corespondence is defined by as-
sociating each language with its complement.

Thus, Theorems 2 and 3 prove that the languages (the decision problems)
that are efficiently recognized (solved) by the TAHNEPs (with both 0 and 1 as
possible values for the accepting-mode bit) are those from NP ∪CoNP.

4 Problem Solving

As in the classical algorithms theory, we focus now on finding the most efficient
solution for a problem, not only a polynomial one. But such a thing may require
an even more hybrid aproach: by looking at the input we decide -using a deter-
ministic, classic, algorithm- the architecture and features of the TAHNEP that
we will use in our solution; finally we run the TAHNEP on that input, and get
the acceptance/rejection answer. In this section we propose a formalization for
this approach.

A Problem Solver (PS) is defined as the following construction: P = (F,
(Tn)n∈N), where F : V ∗ → N is a Turing computable function, and Tn, n ∈ N
is a family of TAHNEPs over the same input alphabet V , the features of every
such TAHNEP being related to n. Since the PS uses TAHNEPs, it will be called
TAHNEP based; a similar definition could have been given taking Tn as a family
of AHNEPs, and, consequently, the problem solver would be AHNEP based.
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Moreover, a TAHNEP based problem solver P = (F, (Tn)n∈N) is called uniform
if all the TAHNEPs Tn have the same accepting-mode bit. In the following we
deal only with such problem solvers.

The language recognized by a problem solver as above is the set:

L(P) = {w ∈ V ∗ | w ∈ L(TF (w))}.

A problem solver P = (F, (Tn)n∈N) is called polynomial if and only if the
following three condition hold:
– F is computable in polynomial time by a deterministic Turing Machine.
– For all n ∈ N, the number of nodes, the number of evolutionary rules and the
cardinality of forbidding and permiting input/output filters of Tn are bounded
by the value P (n) (where P is a polynomial), and there exists a deterministic
polynomial Turing Machine algorithm that outputs the complete description of
each node of Tn , having as input n.
– For all n ∈ N, TimeTn

(x) ≤ Q(m),∀x ∈ V ∗, |x| = m, and ∀m ∈ N (Q being
a polynomial also).
The class of TAHNEP based polynomial problem solvers is denoted PPS. In-
formaly, one may see this class as the class of polynomial TAHNEP based
algorithms. We also denote PPSb the class of uniform problem solvers P =
(F, (Tn)n∈N) with the property that Tn has the accepting-mode bit equal to b,
for all n ∈ N.

We denote by LPPS the class of languages that are recognized by the problem
solvers in PPS. Similar, we denote by LPPSb

the class of languages recognized
by the problem solvers in PPSb.

The following results describe the computational power of polynomial prob-
lem solvers.

Theorem 4. LPPS1 = NP.

Proof. Throughout this proof we assume that L ∈ V ∗.
We first prove that if L ∈ NP we can construct a polynomial problem solver

that accepts L. From Theorem 2 we obtain that there exists a TAHNEP T =
(Γ, f, 1), that accepts L. T also verifies the following properties: TimeT (x) ≤
Q(n),∀x ∈ V ∗, |x| = n, and ∀n ∈ N where Q is a polynomial, and there exists
K ∈ N, such that the number of nodes, the number of evolutionary rules and
the number of permitting and forbidding input/output filters of Γ is less than
K. We define the following TAHNEP based problem solver: P = (F, (Tn)n∈N),
where F (w) = 0,∀w ∈ V ∗, and T0 = Tn,∀n ∈ N. It is not hard to prove that P
is polynomial and L = L(P). Thus L is recognized by P ∈ PPS1.

To prove the reversal, suppose that L = L(P), P ∈ PPS1. We design a
non-deterministic Turing Machine with 4 tapes, that simulates the behaviour of
P. The input of the Turing Machine is the input word w, placed on the tape 1.
First the Turing Machine computes F (w), and places the result on the tape 2.
This computation is carried out deterministicaly and in polynomial time. Then,
the Turing Machine can compute by a deterministic and polynomial algorithm,
starting from F (w) the features (filters and evolutionary rules) of every node of
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the network TF (w). The results are placed on the tape 3. Since the number of
these features of every node of TF (w) is polynomial in F (w), the numebr of nodes
of TF (w) is polynomial in F (w), and F (w) is polynomial in |w|, it follows that
the number of nodes and the number of all the features of TF (w) is polynomial
in |w|. Finally, on the tape 4 we simulate the evolution of w in the network
TF (w) by choosing non-deterministicaly the path in the network that it follows.
Initially, on the tape 4 is found w. This simultation is carried out in the following
way: on the tape 3 we choose a node non-deterministicaly, we see if the string
on the tape 4 can enter that node, we choos an evolutionary rule, apply it to
the string on tape 4 (and, thus, this string is transformed), and see if the string
newly obtained can leave that node; the process is then iterated. Every such step
takes a polynomial number of steps, and the process has at most a polynomial
number of iterations (it is bounded by TimeTF (w)(|w|)). Finally, the string w is
accepted if at the end of the iteration the string on the tape 4 entered the output
node of TF (w), otherwise being rejected. From the construction it follows that
the non-deterministic Turing Machine we have designed gives the correct output
in polynomial time, for every input. Consequently L ∈ NP.

From the above it follows that LPPS1 = NP. �

Using Theorem 3, and a technique similar with the above, we can prove:

Theorem 5. LPPS0 = CoNP

Mainly, the above definitions formalize the technique already used in solving
NP-complete problems via networks of evolutionary processors (for example in
[1, 5]). The two results presented prove that, although the strategy taken in
solving problems requires a pre-processing phase (in which the architecture of
the network is choosen from a set of possibilities), the computational power
remains unchanged. However, as was proven in [5], by using problem solvers we
can obtain very efficient soutions for hard problems (as NP-complete problems),
aspect that is not guaranteed by the constructions in Theorems 2,3.

The results in this section were presented in the framework of TAHNEPs, in
order to keep them close to the regular algorithmic point of view, and, also, in
order to provide a characterization for the class CoNP via polynomial problem
solvers. Another reason for this strategy was that the solutions for NP-complete
problems presented in [5], the first dealing with problem solving by means of
Accepting HNEPs, were based on networks that stopped on every input, model
that coincides with TAHNEPs having the accepting-mode bit 1. A similar result
with Theorem 4 can be proven for AHNEP based problem solvers. However, this
is not the case of Theorem 5, since in order to characterize the class CoNP we
needed the property that the computations stops.
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Abstract. A novel immunotronic approach to fault detection in hard-
ware based on symbiotic evolution is proposed in this paper. In the im-
munotronic system, the generation of tolerance conditions corresponds
to the generation of antibodies in the biological immune system. In this
paper, the principle of antibody diversity, one of the most important
concepts in the biological immune system, is employed and it is realized
through symbiotic evolution. Symbiotic evolution imitates the genera-
tion of antibodies in the biological immune system more than the stan-
dard genetic algorithm(SGA) does. It is demonstrated that the suggested
method outperforms the previous immunotronic methods with less run-
ning time. The suggested method is applied to fault detection in a decade
counter (typical example of finite state machines) and MCNC finite state
machines and its effectiveness is demonstrated by the computer simula-
tion.

Keywords: immunotronic system, hardware fault detection, tolerance
conditions, antibody diversity, symbiotic evolution.

1 Introduction

In the twentieth century, various problems in theoretical immunology were solved
and the mathematical models and the analysis methods of immune phenomena
were developed. The theoretic developments of the immunology have given rise
to the alternative approaches to various fields such as pattern recognition [1],
fault and anomaly detection [2], data analysis [3], machine-learning [4]. Among
these researches, the development of the immune-inspired hardware fault detec-
tion technique or immunotronics (immunological electronics) has been suggested
in [5]. Fault detection is one of the key issues in the fault tolerant hardware and
there have been many researches on the theme such as n-modular redundancy
(NMR) [6], error-detecting and correcting code [7], and self-checking logic circuit
[8]. But these methods have shortcomings compared with immune-inspired fault
detection technique. In other words, in the classical methods, imperfect matching
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between a priori knowledge on the hardware and the fault is not fully utilized.
Imperfect matching enables the system to detect faults (nonselfs) though they
are not known to the system and faults can be detected by tolerance conditions
which are generated from the information of proper states (selfs) by negative
selection algorithm [9]. Tolerance conditions in the immunotronic system corre-
spond to antibodies in the biological immune system and the most important
problem in designing the immunotronic system is how to generate tolerance
conditions effectively and how to distinguish faults (nonselfs) from proper states
(selfs). Bradley et al. adopted negative selection algorithm to select the mature
tolerance conditions from immature tolerance conditions generated using greedy
detetor generation algorithm [5]. Recently, Lee et al. suggested the GA-based
design method of the immunotronic system to improve the fault detection rates
[10]. But the previous immunotronic system imitated the biological immune sys-
tem in a superficial manner. That is, the principle of antibody diversity, one
of the most important concepts in the biological immune system, has not been
taken into consideration in the previous method. This principle enables B cells
to generate the diverse antibodies with limited number of DNA and to detect
more nonselfs with lesser antibodies [11]. In this paper, tolerance conditions are
generated from the perspective of the antibody diversity. Mature tolerance con-
ditions are selected automatically from immature tolerance conditions through
symbiotic evolution algorithm equipped with selection, crossover and mutation.
It is very similar to the way that the mature antibodies are chosen in a biologi-
cal immune system. The rest of the paper is organized as follows: In Section 2,
the biological immune system and the immunotronic system for hardware fault
detection are compared. In Section 3, the symbiotic evolutionary algorithm of
generating tolerance conditions are proposed. In Section 4, the algorithm is ap-
plied to some typical benchmark FSMs and its performance is demonstrated by
the computer simulation. Section 5 concludes the paper with some discussions.

2 The Biological Immune System VS. The Immunotronic
System

2.1 The Biological Immune System

The biological immune system protects body from the attack of invaders or
antigens such as virus and bacteria. The biological immune system consists of
two types of lymphocytes: B cells and T cells. B cells generate antibodies which
destroy the antigens. T cells are divided into T-helper cells which help B cells
to generate antibodies and T-cytotoxic cells which kill the antigens directly.
Interaction of the biological immune system is shown in Fig. 1.

2.2 The Immunotronic System for Fault Detection in Hardware

In general, FSM has transitions between states. The relationship between the
biological immune system and the immunotronic system for hardware fault de-
tection is listed in Table 1.
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Fig. 1. Interaction of biological immune system

Table 1. The biological immune system vs. the immunotronic system

Biological immune system Immunotronic system for fault detection

Self Valid state
Nonself Invalid state

Antibody Set of tolerance conditions (Detectors)
To create antibody Generating of tolerance conditions

Antibody/antigen binding Pattern matching

In the immunotronic system for hardware fault detection, a set of tolerance
conditions is generated using known selfs through negative selection algorithm
so that the set of the tolerance conditions detects the nonselfs. How to gener-
ate the set of tolerance conditions is the most crucial problem in the design of
immunotronic system. In this paper, a new method to generate the tolerance
conditions using symbiotic evolution is proposed and this algorithm takes into
account the principle of antibody diversity.

3 Design of Fault Detection System Through Symbiotic
Evolution Based on the Principle of Antibody
Diversity

3.1 The Principle of Antibody Diversity

Scientists long wondered how the biological immune system generates the proper
antibodies for infinitely many antigens with a limited number of genes. The an-
swer is that antibody genes are pieced together from widely scattered bits of
DNA when they are generated by recombination and mutation. For this reason,
antibodies can have the extreme diversity and the immune system has the ca-
pacity to recognize and response to about different antigens. This is called the
principle of antibody diversity [11]. The process of antibody generation consid-
ering the principle of antibody diversity is shown in Fig. 2.
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Fig. 2. The process of antibody generation

To detect more nonselfs, we need more tolerance conditions. But the resource
of hardware fault detection system is limited, so the smaller the number of
tolerance conditions is, the more effective the system is. The implementation of
the principle of antibody diversity could be the answer to the problem.

3.2 Symbiotic Evolution

The symbiotic evolution is not new but was introduced in several literatures [12]
[13]. Juang et al. applied the symbiotic evolutionary algorithm to the design of
fuzzy controllers and demonstrated that the symbiotic evolution is more efficient
than the SGA [12]. In this paper, symbiotic evolutionary algorithm is employed
to generate the tolerance conditions. Originally, the symbiotic evolution was
motivated by the fitness sharing algorithm in an immune model [14] and its
application to the immunotronic problem looks very reasonable.

In the SGA, an individual (or a chromosome) is composed of a series of un-
known parameters and represents the full solution. The fitness value is assigned
to each individual according to the cooperative performance of the constituent
unknown parameters. In the symbiotic evolution, however, an individual does not
represent the full solution but represents only an unknown parameter, which is
only a part of the full solution. A collection of the unknown parameters (or in-
dividuals) represents a full solution. Usually, the performance of the collection
of the individuals is better than the sum of the performances of the constituent
individuals and that is the reason why we call the algorithm as symbiotic evo-
lution. As the concept of symbiotic evolution comes from the model of immune
system, the symbiotic evolution is very similar to the generation of antibodies in
the biological immune system. So its application to the generation of tolerance
conditions in the immunotronic (artificial immune) system makes sense. There
is another important characteristic we should note in the biological immune
system. The individual antibodies not only cooperate with one another to find
antigens, but also compete with one another to survive. That’s, they cooperate
and compete with one another at the same time. In this paper, we employ the
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Fig. 3. The basic scheme of symbiotic evolution

symbiotic evolution to generate the tolerance conditions. Tolerance conditions
are generated from the perspective of the negative selection and the principle of
the antibody diversity. That is, the tolerance conditions are generated in such
a way that they are as far away as possible from the selfs in term of Hamming
distance (negative selection) and are as different as possible from other tolerance
conditions to accomplish the diversity of the antibodies (antibody diversity). As
in the biological immune systems, the tolerance conditions not only cooperate
with but also compete with one another to accomplish the most efficient antigen
finding. In the standard GA, since an individual represents the full solution, a
fitness value is assigned to an individual. In contrast, in the symbiotic evolution,
a collection of individuals represents a full solution and a fitness value is assigned
to the collection of individuals. So, we have to break up the single fitness value
and assign the divided values to the constituent individuals. In this paper, we
employ the following fitness sharing strategy. The strategy is a bit motivated by
Lin’s work [12] but it is tailored to this problem. The main scheme of algorithm
is shown in Fig. 3.

Here, it is assumed that a population is composed of individuals.
Step 1) Select NT tolerance conditions from a population of NA individuals

in a random manner, where NT is the size of the set of the tolerance conditions
and NT � NA.

Step 2) Compute the fitness value for the set of the selected NT tolerance
conditions, break up the value and distribute each divided value to the corre-
sponding constituent tolerance condition. The fitness value for the set of the
selected NT tolerance conditions is defined as

Fitness =
NT∑
k=1

(min
|S|
j=1(H(σj , τk))) +

NT∑
i=1

NT∑
j=1

H(τi, τj) (1)

and the fitness value for each constituent tolerance condition is computed by
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fk = min
|S|
j=1(H(σj , τk)) +

NT∑
i=1

NT∑
j=1

H(τi, τj)/NT (2)

NT : the size of the set of tolerance conditions

σj : jth self string(1 ≤ j ≤ |S|)
τk : kth tolerance condition(1 ≤ k ≤ NT )

where,

H(X,Y ) =
N∑

i=1

(xi ⊕ yj), X, Y ∈ {0, 1} : Hamming Distance (3)

This fitness value (1) consists of two terms: The first term prohibits the un-
desired binding of the selfs and the tolerance conditions (negative selection) and
the second term is aimed at the proper allocation of the tolerance conditions to
achieve the antibody diversity. This value is broken up and is distributed to each
constituent individual as in (2). The fitness value (2) for each tolerance condition
is also composed of two terms. The first term is related to the performance of a
single tolerance condition τk while the second term is related to the symbiotic
(or cooperative) performance of the set of the selected tolerance conditions.

Step 3) Repeat the above steps 1 and 2 NR times until every tolerance con-
dition is selected a sufficient number of times. In each trial, we accumulate the
fitness value fk for each constituent tolerance condition and count the times
when each individual is selected.

Step 4) Divide the accumulated fitness value of each individual by the number
of times it was selected. In this way, we break up the fitness value assigned to
the collection of the tolerance conditions and distribute it to the constituent
tolerance conditions (individuals).

The symbiotic evolution employs two basic reproduction operators (crossover
and mutation) as in the SGA. For a fair comparison, we use the same design
parameters for the SGA and the proposed scheme. The design parameters are
shown in Table 2.

Table 2. Genetic parameters

Parameter SGA Symbiotic Evolution

The Number of Individual 1000 NA

The Number of Generation 1000 1000
The Size of Chromosome p x NT p

Mutation Probability 0.7/Length of Individual 0.7/Length of Individual
Crossover Probability 0.7 0.7

4 Simulation and Result

In this section, the proposed algorithm is applied to a decade counter, a typical
example of FSM [5] and MCNC benchmark FSMs [15]. An individual string is
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composed of a user input, previous state and a current state (eg. 01/0000/0001,
00/0010/0010, etc).

4.1 Decade Counter

In this subsection, a decade counter, a typical FSM, taken from the recent paper
[5], is considered. There are forty valid transitions in this FSM and the number of
selfs is forty. For comparison, we generate tolerance conditions by the proposed
method and the SGA-based method [10]. We repeat the simulation fifty times
for both methods and one run is composed of one thousand generations. We
measure the CPU times and compute the nonself detection rates for various
design parameters. The results are shown in Fig. 4. From the figure, it should
be noted that the suggested method demonstrates almost the same or a slightly
better performance of the previous method [10] but requires much less time
than the previous method. The reason for the time-saving might be that, in the
SGA-based immunotronic method, an individual is a collection of the tolerance
conditions and the collection is evaluated while, in the suggested method, an
individual is a tolerance condition and its value is evaluated directly. Thus, in
the SGA-based method, it would take more time to find an individual which is all
composed of the good tolerance conditions. Instead, in the symbiotic evolution-
based method, a tolerance conditions are evaluated directly and if we find NT

good tolerance conditions, we can finish the search. Thus, the suggested method
saves much time compared with the previous SGA-based immunotronic method.
In addition, it can be seen that the increase in either NA or NR leads to not only
the increase in the nonself detection rates but also the increase in the CPU time.
So it is important to determine the optimal NA and NR. Next, the suggested
scheme is compared with another previous immunotronic method [5] based on
the greedy detector. The performances of the two methods are compared in

Fig. 4. Comparison of the SGA-based immunotronic method and the suggested method
(CPU times and Nonself detection rates)
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Fig. 5. Comparison of the Greedy-based immunotronic method and the suggested
method (Nonself detection rates)

Fig. 6. Comparison of the SGA-based immunotronic method and the suggested method
(CPU times and Nonself detection rates) (Various MCNC FSMs)

Fig. 5. The nonself detection rate of the proposed symbiotic scheme is much
higher than that of the previous greedy detector-based immunotronic method.
This result looks reasonable because the suggested symbiotic approach generates
the tolerance condition by accommodating the principle of the antibody diversity
and the generated tolerance conditions search for the nonselfs in a wide range
of the state space.

4.2 MSNC Benchmark FSMs

In this subsection, we apply the suggested method to MCNC benchmark FSMs.
The MCNC FSMs are typical benchmark circuits and widely used in numerous
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research literatures regarding fault detection [15]. In this example, we set the
number of tolerance conditions as half of the number of selfs and run the simula-
tion fifty times. The average running time and the average nonself detection rates
are shown in Fig. 6 respectively for various FSMs. As in the previous example,
the suggested method demonstrated a slightly better performance (nonself de-
tection rates) within much less time than the SGA-based immunotronic method.
In addition, the method suggested herein demonstrates the much better perfor-
mance than that of the greedy method.

5 Conclusion

In this paper, a novel immunotronic approach to hardware fault detection has
been proposed. In the proposed immunotronic algorithm, antibodies (tolerance
conditions) were generated using the negative selection and the principle of an-
tibody diversity, two of the most important concepts in the biological immune
system. In the implementation of the tolerance condition generation, symbiotic
evolution is employed. Two benchmark problems were considered in this pa-
per: decade counter and MCNC FSMs. Through many simulation results, it was
seen that the hardware system using the tolerance conditions generated by the
proposed algorithm shows the improved nonself detection rates than the greedy
method and the consumed CPU time for evolution is considerably reduced com-
pared to the standard GA.

Acknowledgement

This work was supported by the Ministry of Commerce, Industry and Energy of
Korea.

References

1. S. Forrest, B. Javornik, R.E. Smith and A.S. Perelson , ”Using Genetic Algorithms
to Explore Pattern Recognition in the Immune System,” Evolutionary Computa-
tion, 1(3), pp.191-211, 1993

2. D. Dasgupta and S. Forrest, ”An anomaly detection algorithm inspired by the im-
mune system,” in Artificial Immune System and Their Applications, D. Dasgupta,
Ed. Berlin Germany : Spinger-Verlag, pp.262-277, 1998

3. J. Timmis, M. Neal, J. Hunt, ”Data analysis using artificial immune systems,
cluster analysis and Kohonen networks: some comparisons,” Proc. of IEEE SMC
’99 Conference, Vol. 3 , 12-15 pp.922 - 927, 1999

4. R. Xiao, L. Wang, Y. Liu ”A framework of AIS based pattern classification and
matching for engineering creative design,” Proc. of International Conference on
Machine Learning and Cybernetics, Vol. 3 , 4-5, pp.1554 - 1558, Nov. 2002

5. D.W. Bradley and A.M. Tyrrell, ”Immunotronics-Novel Finite-State-Machine Ar-
chitectures With Built-In Self-Test Using Self-Nonself Differentiation,” IEEE
Trans. on Evolutionary Computation, Vol.6, No. 3, pp. 227-238, Jun. 2002



142 S. Lee et al.

6. Y. Chen and T. Chen, ”Implementing fault-tolerance via modular redundancy with
comparison,” IEEE Trans. on Reliability, Volume: 39 Issue: 2 , pp. 217 -225, Jun
1990.

7. S. Dutt and N.R Mahapatra, ”Node-covering, error-correcting codes and multi-
processors with very high average fault tolerance,” IEEE Trans. Comput., Vol. 46,
pp.997-1914, Sep.1997

8. P. K. Lala, Digital Circuit Testing and Testablilty, New York: Academic, 1997
9. S. Forrest, L. Allen, A.S. Perelson, and R. Cherukuri, ”Self-Nonself Discrimination

In A Computer,” Proc. of IEEE Symposium on Research in Security and Privacy,
pp.202-212, 1994.

10. S. Lee, E. Kim, M. Park, ”A Biologically Inspired New Hardware Fault Detection :
immunotronic and Genetic Algorithm-Based Approach,” International Journal of
Fuzzy Logic and Intelligent Systems, vol. 4 , no. 1, pp7-11, June, 2004.

11. R.A. Goldsby, T.J. Kindt, and B.A Osborne, Kuby Immunology, 4th ed. W.H
Freeman and Company: New York, 2000.

12. C. Juang, J. Lin, and C. Lin, ”Genetic Reinforcement Learning through Symbi-
otic Evolution for Fuzzy Controller Design,” IEEE Trans. on Systems, Man And
Cybernetics-Part B Cybernetics, Vol.30, No. 2 April 2000.

13. D.E. Moriarty and R. Miikkulanien, ”Efficient reinforcement learning through sym-
biotic evolution,” Mach. Learn, vol.22, pp.11-32, 1996.

14. R.E. Smith, S. Forrest and A.S. Perelson, ”Searching for diverse, cooperative pop-
ulations with genetic algorithms,” Evol. Comput,, vol.1, no.2 pp 127-149 1993.

15. S. Yang ”Logic Synthesis and Optimization Benchmarks User Guide Version 3.0,”
Technical Report, Microelectronics Center of North Carolina, 1991.



A Basic Approach to Reduce the Complexity of
a Self-generated Fuzzy Rule-Table for Function
Approximation by Use of Symbolic Regression

in 1D and 2D Cases
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Department of Computer Architecture and Computer Technology,
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Abstract. There are many papers in the literature that deal with the
problem of the design of a fuzzy system from a set of given training
examples. Those who get the best approximation accuracy are based on
TSK fuzzy rules, which have the problem of not being as interpretable
as Mamdany-type Fuzzy Systems. A question now is posed: How can the
interpretability of the generated fuzzy rule-table base be increased? A
possible response is to try to reduce the rule-base size by generalizing
fuzzy-rules consequents which are symbolic functions instead of fixed
scalar values or polynomials, and apply symbolic regressions technics in
fuzzy system generation. A first approximation to this idea is presented
in this paper for 1-D and 2D functions.

1 Introduction

The problem of estimating an unknown function f from samples of the form
(−→x k, zk); k=1,2,..,K; with zk = f(−→x k)∈ R and −→x ∈ RN (i.e. function approxi-
mation from a finite number of data points), has been and is still a fundamental
issue in a variety of scientific and engineering fields. Inputs and outputs can
be continuous and/or categorical variables. This paper is concerned with con-
tinuous output variables, thus considering regression or function approximation
problems [5].

Generally, there are three ways to solve the function approximation problem
from a set of numerical data:

1. by building a mathematical model for the function to be learned
2. by building a model-free system
3. by seeking human experts’ advice

One limitation of the first method is that accurate mathematical models for
complex non-linear systems either do not exist or can only be derived with great
difficulty. Therefore, the theory of traditional equation-based approaches is well
developed and successful in practice only for linear and simple cases [5].

J. Mira and J.R. Álvarez (Eds.): IWINAC 2005, LNCS 3562, pp. 143–152, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Recently, model-free systems, such as artificial neural networks or fuzzy sys-
tems, have been proposed to avoid the knowledge-acquisition bottleneck [1], [2].
Fuzzy systems provide an attractive alternative to the “black boxes” character-
istic of neural network models, because their behavior can be easily explained
by a human being.

Many fuzzy systems that automatically derive fuzzy IF-THEN rules from
numerical data have been proposed in the bibliography to overcome the problem
of knowledge acquisition [2], [7]. An important study in this context was carried
out in [9].

The approaches presented in [3],[8],[7] need a fixed structure for the rules.
However, the distribution of the membership functions (shape and location) has
a strong influence on the performance of the systems. Its usually difficult to define
and tune the membership functions and rules. These limitations have justified
and encouraged the creation of intelligent hybrid systems that overcomes the
limitations of individual techniques. Genetic algorithms (GA’s) and artificial
neural networks (ANN’s) offer a possibility to solve this problem [2], [1], [6].

This paper proposes a generalization based on the learning method proposed
in [5] to automatically obtain the optimum structure of a fuzzy system and derive
fuzzy rules and membership functions from a given set of training data, using a
hybridization between fuzzy systems and traditional equation-based approaches
using symbolic regression [4]. We will propose and study a basic application of
the idea for one dimensional (1-D) continuous functions. Our aim is to obtain
an analytical partitioned description of a 1-D function domain, using symbolic
regression to determine some possible analytical equations for each partition
while, at the same time, the number and definition of each partition is optimized.
Each partition of the input domain is associated with a trapezoidal membership
function that can be intuitively interpreted without effort.

2 Statement of the Problem

We consider the problem of approximating a continuous single-input single-
output function to clarify the basic ideas of our approach, since the extension
of the method to a multiple-input is straightforward. Let us consider a set D
of desired input-output data pairs, derived from an unknown 1D or 2D func-
tion or system F. Each vector datum (−→x k, yk) can be expressed as (xk, yk) or
(xk

1 , xk
2 , yk) and k=1,2,...,K. Our fuzzy system comprises a set of n IF-THEN

fuzzy rules having the following form for 1D case:

IF x is Xi THEN y = fi(x) (1)

where i=1..n with n being the number of membership functions of the input
variable and fi(x), j=1..n, is a analytical equation associated to rule (partition
of x domain). For the 2D case the fuzzy rules have a similar form:

IF x1 is Xi
1 AND x2 is Xj

2 THEN y = fi,j(x) (2)
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where i=1..n, j=1..m with n,m being the number of membership functions of
the input variables x1 and x2 respectively and fi,j(x) is a analytical equation
associated to the rule (partition of 2D space of x1 and x2 domains). Using the
above notation, the output of our fuzzy system can be expressed as (for the 1D
case):

F̃ (xk; R, C) =
∑

n

i=1 fi(x) · Ui(x)∑
n

i=1 Ui(x)
(3)

and in 2D case as:

F̃ (−→x k;R,C) =

∑
n

i=1

∑
m

j=1 fi,j(x1, x2) · Ui,j(x1, x2)∑
n

i=1

∑
m

j=1 Ui,j(x1, x2)
(4)

where an explicit statement is made of the dependency of the fuzzy output,
not only on the input vector, but also on the matrix of rules R and on all the
parameters that describe the membership functions C. The problem considered
in this paper may be stated in a precise way as that of finding a configuration
C and generating a set of fuzzy rules from a data set D of K input-output pairs,
such that the fuzzy system correctly approximates the unknown function F. The
function to be minimized is the sum of squared errors:

J(R, C) =
∑
k∈D

(F (xk) − F̃ (xk; R, C))2. (5)

The index selected to determine the degree of accuracy of the obtained fuzzy
approximation is the Normalized Root-Mean-Square Error (NRMSE) defined as:

NRMSE =

√
e2

σ2
y

(6)

where σ2
y is the mean-square value of the output data, and e2 is the mean-square

error between the obtained and the desired output. This index is independent
of scale factors or number of data.

3 Proposed Approach

In this section we present the basics of the algorithm we have implemented and
studied. Figure 1 shows a flowchart describing the structure of the algorithm.

Before starting the algorithm, we must find an upper bound to the number
of partitions for the input variable. For this purpose, we compute the number
of local maxima and minima of the underlying function, with the idea that in
the worst case, linear (or planar) functions can be use to approximate the seg-
ments in between. Throughout the algorithm, the number of partitions will be
optimized starting from this maximal value. As can be seen from Fig. 1, the al-
gorithm performs a search for the best system in a top-down fashion, i.e. starting
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Fig. 1. Algorithm’s flowchart

from the biggest number of partitions, it tries to optimize both the location of
each partition and the function used in the consequent of each fuzzy rule. After
generating every system, it is analyzed to try to share equations between rules
in order to reduce the number of rules. The procedure is to try to apply for each
rule, the consequents (equations) of rules of adjacent partitions and use the best
one. The procedure iterates until no new change can be performed. Finally, we
optimize the membership functions parameters (see subsection 3.2) using the
Levenberg-Marquardt algorithm and calculate the NRMSE for the final system.

For a given number of partitions, the algorithm in charge of making such
optimization is presented in figure 2.

Figure 2 represents the sub-algorithm that is the core of our method. It con-
siders each one of the i partitions at a time. For each partition, an equation F is
generated and its constants optimized as explained in subsection 3.1; then itera-
tively we generate mutated forms of F, optimizing its constants and we accept or
reject it if it is better than the actual F. The algorithm iterates until a minimum
value of NRMSE or a maximum number of iterations performed are not reached.
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Fig. 2. Local search algorithm for optimization of equation structure

3.1 Representation of Rules Consequents: Symbolic Equations

In order to have the less limited possible set of usable functions as consequents
and use symbolic integration techniques, we have represented them as a vector
of elements that represent a equation in Reverse Polish Notation (RPN) with a
set of possible nodes:

1. Variable: x.
2. Constant: a real value.
3. Binary operators: +, -, *, ‘safe /’ . We have defined ‘a safe b’ as a

1+b2 , the
reason is to prevent divisions by zero.

4. Unary operators: - (negation), cos, sin, tanh, atan, ‘safe ln(a)’, ‘limited ea’.
We have defined ‘safe ln (a)’ as ln(1 + a2), the reason is to prevent ∞
values; and ‘limited ea’ as e−a2

, the reason is to prevent strong function
value variations.
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Nodes that are ‘variable’ or ‘operator’ have associated 2 implicit constants: 1
multiplicative and another additive. Note that this constants are distinct than
the ‘constant’ node type. This large number of constants by equation gives a lot
of flexibility to the procedure and helps in the optimization stage (for example,
the input and output domains can be implicitly normalized in an automatic way).

For example, the function encoded as:

cos

/

x1

* 9.3
+6.8

* 6.28
+3.14

* 2
+4

Fig. 3. Tree view of example equation

Nodes x const / cos
constants

Multiplicative 3 1 3.14 9.3
Additive 4 6.28 0

is

f(x) = 9.3 · cos
(

3.14 · 1
1 + (3x + 4)2

+ 6.28
)

+ 0 (7)

To limit the complexity of the results we have quoted the size of the equations
to 10 elements in the executions.

With this representation, we can apply “mutation” operators that make pos-
sible to use local search algorithms to equations in order to optimize their struc-
ture itself. A mutation consist in 75% of probability of choosing one of the nodes
in the equation tree and substitute all the subtree beyond by another one of the
same length; and 25% of probability of substituting the equation by a new one.
See figure 4.

3.2 Membership Functions of the System

Intuitively, the results of the algorithm should be an indication of the kind of
functions that seem to follow the output of the function to model, in some in-
tervals of the input variable; but we should not forget the “transitions” between
them. For these, trapezoidal membership functions can be of much help to im-
plement that idea.

As is well known, we can define a trapezoidal membership function over
the interval [0,1] using 4 parameters, 0 ≤ z1 ≤ c1 ≤ c2 ≤ z2 ≤ 1. In our
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cos

/

x1

cos

*

xx

Fig. 4. Tree view of a mutation example

approach, we have also restricted the membership functions making them share
some parameters in order to insure a soft union of functions parts, in the form
determined by their indexes. For example, for t + 1 partitions, we have:

U0(x) =


1 0 ≤ x < c0,2

c1,1−x
c1,1−c0,2

c0,2 ≤ x < c1,1

0 otherwise
...

Ui(x) =


x−ci−1,2

ci,1−ci−1,2
ci−1,2 ≤ x < ci,1

1 ci,1 ≤ x < ci,2
ci+1,1−x

ci+1,1−ci,2
ci,2 ≤ x < ci+1,1

0 otherwise
...

Ut(x) =


x−ct−1,2

ct,1−ct−1,2
ct−1,2 ≤ x < ct,1

1 ct,1 ≤ x < 1
0 otherwise

(8)

Extension to 2D case is simply:

Ui,j(x1, x2) = Ui(x1) ∗ U2(x2) (9)

4 Simulation Results

To see how the proposed approach works and to facilitate its understanding, in
this Section we use an 2 artificial examples.

4.1 1D Case

For 1D case, we have generated a function by combining the following three
functions:

f1(x) = e−5x · sin(2πx)
f2(x) = ln(1 + x2) + 0.2

f3(x) = 0.25 ∗ sin(5πx + π/2) + 0.6
(10)
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using trapezoidal membership functions as

f(x) = f1(x)U(x, 0, 0, 0.13, 0.33) +
f2(x)U(x, 0.13, 0.33, 0.47, 0.67) + f3(x)U(x, 0.47, 0.57, 1, 1). (11)

We decided to parse the function with 1000 homogenously distributed points,
without noise.

The results of apply the proposed algorithm to the 1D example are given by
Tables 2:

Table 2. Statistical results obtained by the proposed methodology for the 1D example

N of Partitions Best NRMSE MEAN NRMSE VAR NRMSE AVG of final N of rules

5 0.060 0.066 0.000 5.000

4 0.064 0.078 0.000 3.000

3 0.094 0.134 0.000 3.000

2 0.129 0.178 0.034 2.000

1 0.034 0.113 0.008 1.000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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Fig. 5. Output (dotted line) of the best solution found by the algorithm

Table 3. Number of fuzzy rules needed to get an NRMSE similar to the one obtained
by the proposed algorithm for 1D example

N of Rules NRMSE

40 0.061

35 0.062

30 0.063

25 0.065

20 0.071

15 0.088

10 0.149
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It is interesting to note that the solution with just one partition (therefore with
a single expression) has been the one with the best performance result.

In order to compare with other works, we have applied an adaptation of the
method presented in [5] to obtain fuzzy systems with NRMSE similar to the one
generated by our method. Table 3 shows these results.

4.2 2D Case

For 2D example we use the following expression:

f(x1, x2) = sin(3π · x1) + cos(3π · x2) (12)

We decided to parse the function with 10000 random points, without noise.
The results of apply the proposed algorithm to 2D example are given by

Table 4. We have also applied the same method [5] that for 1D case, with results
given by Table 5:

Table 4. Statistical results obtained by the proposed methodology for the 2D example

N of Partitions (x1,x2) Best NRMSE MEAN NRMSE VAR NRMES AVG of final N of Rule

(4, 4) 0.201 0.482 0.197 11.400

(4, 3) 0.083 0.248 0.023 8.600

(4, 2) 0.160 0.377 0.057 7.000

(4, 1) 0.610 0.665 0.002 3.500

(3, 4) 0.000 0.064 0.011 4.300

(3, 3) 0.346 0.881 0.231 6.700

(3, 2) 0.114 0.264 0.005 5.800

(3, 1) 0.236 0.348 0.019 3.000

(2, 4) 0.267 0.531 0.110 5.000

(2, 3) 0.318 0.614 0.141 3.200

(2, 2) 0.046 0.556 0.122 3.000

(2, 1) 0.819 0.857 0.004 1.000

(1, 4) 0.151 0.295 0.024 4.000

(1, 3) 0.000 0.125 0.070 1.300

(1, 2) 0.080 0.249 0.053 2.000

(1, 1) 0.038 0.593 0.092 1.000

Table 5. Number of fuzzy rules needed to get an NRMSE similar to the one obtained
by the proposed algorithm for 2D example

x1/x2 5 4 3 2 1

5 0.244 0.270 0.734 0.729 0.761

4 0.353 0.369 0.788 0.785 0.812

3 0.250 0.275 0.738 0.732 0.764

2 0.691 0.700 0.978 0.970 0.995

1 0.693 0.704 0.980 0.976 1.000
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5 Conclusions

This paper has dealt with the problem of reducing the size of the rule base in the
design of a fuzzy system from a set of given training examples. For that purpose,
we have generalized the fuzzy-rules consequents allowing them to be symbolic
functions instead of fixed scalar values or polynomials, and applying symbolic
regressions technics in the fuzzy system generation. The results indicate that this
is a possible good application of symbolic regression to reduce the fuzzy rules base
complexity, but it’s a little far from being effective to increase the interpretability
of the whole system. In future works, the method will be extended to an arbitrary
number of input, single-input functions, using Gaussian membership functions,
more practical for n-D problems. We will also try to define a theory about
symbolic equation creation and operation for human understandability, with
the idea to endow the equations generated with as much relevant meaning as
possible.
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Abstract. The evolutionary algorithms can be considered as a powerful
and interesting technique for solving large kinds of control problems.
However, the great disadvantage of the evolutionary algorithms is the
great computational cost. So, the objective of this work is the parallel
processing of evolutionary algorithms on a general-purpose architecture
(cluster of workstations), programmed with a simple and very well-know
technique such as message passing.

1 Introduction

Efficiency of evolutionary algorithms in the optimization problem solution lead
to consider them as an alternative method to solve control systems problems.
The Evolutionary Algorithms (EA) present a series of advantages with respect to
other methods that are most effective in some situations but present applicability
limitations. Some of this methods are:

– Linear Programming. Only applicable to problems with linear functions.
– Non-linear Optimization Methods Based on the Gradient. Applica-

ble to problems with non-linear functions. The functions must be continuous
and differentiable, at least at the neighborhood of the optimum. The meth-
ods based on the gradient also work with linear problems, but in this case,
the linear programming is preferable.

– Exhaustive Search. Applicable on those cases where there is a limited
number of solutions to problem.

However, the evolutionary algorithms are independent of the function to op-
timize, and can be applied when the number of possible solutions is unlimited.

The application of evolutionary algorithms to control can be classified in
two main groups: first, the off-line applications, the most cases are included
in this group; in these applications the EA can be employed as a search and
optimization engine to select suitable control laws for a plant to satisfy given
performance criteria or to search for optimal parameter setting for a partic-
ular controller structure. And second, the on-line applications, where the EA
may be used as a learning mechanism to identify characteristics of unknown or
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non-stationary systems or for adaptive controller tuning for known or unknown
plants. The on-line methods present two essential problems: on the one hand,
the high computational cost, making difficult that the parameters are available
when they are needed, and on the other hand, and even a more important thing,
is the fact that the stochastic nature of this kind of algorithms could lead to
that the best solution obtained doesn’t comply with the minimum requirements.
These disadvantages have made to focus almost all works in the off-line methods,
leaving the on-line methods for pure research works.

In certain circumstances, the algorithm execution time comes a very impor-
tant factor. In the case of on-line methods is necessary to have the parameters in
the appropriate moment, a higher power in computation is required. Other case
is when the algorithm become more complex, as in [10], here the controller is
unknown and the algorithm assumes responsibility for determining the number
of zeros and poles in the controller and its tuning.

When computational complexity is increased, the use of multiple processors
to solve the problem, acquire significance. Available options, can be grouped
basically in two categories: to use a supercomputer with multiple processors, or
to use a cluster of PC’s.

The advantages of clusters of PC’s over supercomputers are: a much lower
cost, and a higher capacity to be upgraded. In this work, a cluster of 14 PC’s
was used. Regarding the software, Matlab with the PVMTB functions library
were used.

2 Controllers Design by Evolutionary Algorithms

In the early 1990s, evolutionary algorithms were first investigated as an alterna-
tive method of tuning PID controllers.

Oliveira et al [8] used a standard genetic algorithm to get initial estimates
for the values of PID parameters. They applied their methodology to a variety
of linear time-invariant systems.

Wang and Kwok [14] tailored a genetic algorithm to PID controller tuning.
They stressed the benefit of flexibility with regard to cost function, and alluded to
the concept of Pareto-optimality to simultaneously address multiple objectives.

More recently, Vlachos et al [13] applied a genetic algorithm to the tuning of
decentralized PI controllers for multivariable processes. Controller performance
was defined in terms of time-domain.

Onnen et al [9] applied genetic algorithms to the determination of an optimal
control sequence in model-based predictive control. Particular attention was paid
to non-linear systems with input constraints.

Genetic algorithms have also been successfully applied in the field of H-
infinity control. Chen and Cheng [3] proposed a structure specified H-infinity
controller. The genetic algorithm was used to search for good solutions within
the admissible domain of controller parameters.

They have also been extended to simultaneously address multiple design
objectives, achieved via the incorporation of multiobjective genetic algorithm
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(MOGA). Multiple design objectives may be defined, in both the time and fre-
quency domain, resulting in a vector objective function. In one such study, Fon-
seca and Fleming [4] applied a MOGA to the optimization of the low-pressure
spool speed governor of a Rolls-Royce Pegasus gas turbine engine.

Research has also been directed toward the so-called intelligent control sys-
tems. The two most popular techniques are fuzzy control and neural control.

Ichikawa and Sawa [5] used a neural network as a direct replacement for a con-
ventional controller. The weights were obtained using a genetic algorithm. Each
individual in the population represented a weight distribution for the network.

Tzes et al [11] applied a genetic algorithm to the off-line tuning of Gaussian
membership functions, developing a fuzzy model that described the friction in a
dc-motor system.

Evolutionary methods have also been applied to the generation of control
rules, in situations where a reasonable set of rules is not immediately apparent.
Matsuura et al [7] used a genetic algorithm to obtain optimal control of sensory
evaluation of the sake mashing process. The genetic algorithm learned rules
for a fuzzy inference mechanism, which subsequently generated the reference
trajectory for a PI controller based on the sensory evaluation. Varsek et al [12]
also used genetic algorithms to develop rule bases, applied to the classic inverted
pendulum control problem.

3 Problem Description

The problem formulation corresponds to the RCAM design problem proposed for
the GARTEUR Action Group FM(AG08), [6]. The non-linear model proposed
was used to generate a linear model around the following conditions: airspeed
VA = 80 m/s, altitude h = 1000 m, mass = 120000 kg, center of gravity cgx =
0.23, cgz = 0.1 and transport delay δ = 0. From the linearized model obtained,
only the longitudinal mode was used, because is trivial to extend the algorithm
to the lateral mode, once designed.

The linearized model, in the state-space representation, is:
 q̇

θ̇
u̇B
ẇB
ẊT

χ̇T H


 =


−0.9825 0 −0.0007 −0.0161 −2.4379 0.5825

1 0 0 0 0 0
−2.1927 −9.7758 −0.0325 0.0743 0.1836 19.6200
77.3571 −0.7674 −0.2265 −0.6683 −6.4785 0

0 0 0 0 −6.6667 0
0 0 0 0 0 −0.6667
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 0 0
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0 0
0 0

6.6667 0
0 0.6667


(

dT
dT H

)
(

q
nx
nz
wV
VA

)
=

(
1 0 0 0 0 0

0.0075 0 −0.0033 0.0076 0.0187 2
−0.2661 0 −0.0231 −0.0681 −0.6604 0

0 −79.8667 −0.0283 0.9996 0 0
0 0 0.9996 0.0290 0 0

)
 q

θ
uB
wB
XT
χT H


 (1)

where the states are: pitch rate (q), pitch angle (θ), x component of the inertial
velocity in body-fixed reference frame (uB), z component of the inertial velocity
in body-fixed reference frame (wB), state corresponding to the tailplane (XT )
and state corresponding to the engines throttles (χTH).

The outputs are: pitch rate (q), horizontal load factor (nx), vertical load factor
(nz), z component of vertical velocity in the vehicle-carried reference frame (wV )
and air speed (VA).
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The objectives considered are in the design specifications, in the document
[6]. For longitudinal mode, the design specifications are summarized as follows:

– Closed-loop stability: it’s the most basic objective to be satisfied.
– The control system should be able to track step reference signals: in VA with

a rise time tr < 12s, a setting time ts < 45s and overshoot Mp < 5%,
and in flight path angle (γ) with tr < 5s, ts < 20s and Mp < 5%. But
γ isn’t available in the model. To cope with such a problem, the relation
sin(γ) = −wV

V can be used, where V is the total inertial velocity.
– Ride quality criteria: vertical accelerations would be minimized.
– Saturations limits in control signals, would be observed.
– Robustness criteria: the gain margin is required to be at least 10 dB and the

phase margin is required to be at least 50.

In a previous work [1], the authors of this document solved the problem
by means of an sequential evolutionary algorithm. They took a fixed controller
structure for this, as showed in figure 1, where a static gain matrix (Kp) was
directly applied on the 5 model outputs, and another gain matrix (Ki) was
applied on the integral of the errors in VA y wV , to eliminate steady state errors.
The algorithm got the gains, Kp y Ki, meeting the design specifications.

Fig. 1. Structure of longitudinal controller

The sequential evolutionary algorithm used, is shown in figure 2. A initial
population of chromosomes is randomly generated, whose members would be
possible solutions to the problem, properly coded. Chromosomes would be eval-
uated and sorted according to fitness. The chromosome with the best fitness
would be established as the problem solution. After that a loop would start,
where new generations of chromosomes would be obtained from previous gener-
ation, by applying evolutionary operators over the parents selected in a previous
step. The new generation would be again evaluated and sorted according to fit-
ness. If the best chromosome in the current population was more suitable than
the previously established as solution to problem, it would replace it. Finally
if end conditions are satisfied, the program would finish, otherwise a new loop
iteration would start.

In a more ambitious project, it’s possible to let the algorithm to find the con-
troller structure, or in a multivariable system, ask the algorithm for the matrix
of transfer functions representing the controller, taking the algorithm charge
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k ← 0
get random initial population Pk(x)
for each xi in Pk(x)

decode xi

evaluate xi ← get fitness

endfor

sort Pk(x) according to fitness

solution ← best xi in Pk(x)
while not end conditions

k ← k + 1
select parents by tournament selection

get new population Pk+1(x)
for each xi in Pk(x)

decode xi

evaluate xi ← get fitness

endfor

sort Pk(x) according to fitness

if the best xi in Pk(x) is better than solution

solution ← best xi in Pk(x)
endif

endwhile

Fig. 2. Sequential Evolutionary Algorithm

in that case of determining the number of zeros and poles for each transfer
functions. To solve this kind of problems, the algorithm would have to tune a
very high number of controllers, which meant that the time of execution in-
crease dramatically. In that cases, the necessity to speedup the tune process
arise.

If the sequential algorithm in figure 2 is parallelized, and a good speedup is
obtained, the parallelization result could be used as a component of a more com-
plex program: the parallelized algorithm would be called every time a controller
has to be tuned. Now the parallelization of the sequential algorithm is described
and also the speedup obtained are shown.

4 Parallelizing the Algorithm

Matlab is a standard in control, thanks to its specialized toolboxes. However, it
lacked ability to carry out parallel programing. To cover this gap, Baldomero
[2], designed PVMTB (Parallel Virtual Machine ToolBox), a toolbox including
almost all functionalities in PVM, the known parallelization library by message
passing.

Thanks to PVMTB, all the control specialized Matlab functions can be used
to design a parallel evolutionary algorithm. The parallelizing process will be
described below.

Matlab with PVMTB, and a Master/Slave strategy were used.
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In order to parallelize effectively the sequential algorithm previously de-
scribed, a study to determine the most computing intensive parts was carried
out, resulting that generating new chromosomes from parents and determining
fitness were the most time consuming tasks. Therefore, this were the stages where
parallelization would be focused.

An inherent feature of evolutionary algorithms was also taken into account:
for each generation, all chromosomes will have to be created and evaluated before
continuing with a new generation. If the workload isn’t uniformly distributed
between the different processes, those that firstly finish their work will have

start up PVM: pvm_start_pvmd();

start up slave tasks: pvm_spawn();

k ← 0
get random initial population Pk(x)
for each xi in Pk(x)

decode xi

evaluate xi ← get fitness

endfor

sort Pk(x) according to fitness

solution ← best xi in Pk(x)
while not end conditions

k ← k + 1
select parents by tournament selection

for each slave

send a pair of parents: pvm_send();

endfor

while there is a pair of parents not used

receive 2 evaluated chromosomes from one slave: pvm_recv();

send a pair of parents to this slave: pvm_send();

endwhile

while num chromosomes asked for < size of Pk(x)
receive 2 evaluated chromosomes from one slave: pvm_recv();

ask for 2 inmigrants to this slave: pvm_send();

endwhile

while num chromosomes received < size of Pk(x)
receive 2 evaluated chromosomes from one slave: pvm_recv();

endwhile

sort Pk(x) according to fitness

if the best xi in Pk(x) is better than solution

solution ← best xi in Pk(x)
endif

endwhile

for each slave

send signal to quit

endfor

halt PVM: pvm_halt;

Fig. 3. Master Process Algorithm
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to wait a lot, because they can’t start with a new generation until the others
processes finish with the current one. That obviously imply a decrease of the
speedup obtained with parallelization.

An added difficulty is the fact that times to get the fitness of different chromo-
somes, can be very different. A chromosome implying a unstable system, would
be quickly evaluated, but those that give rise to a stable system would have to be
studied more slowly, to determine the system features, increasing the evaluation
time. To minimize this problem, the master divided the work in small tasks, and
quickly assign a task to slaves waiting for a work.

The master also had to receive the results from slaves, and to organize them
as they arrived. It wasn’t necessary to parallelize the evaluation of the initial
population, because first chromosomes generally give rise to unstable systems,
and are quickly evaluated. The algorithm corresponding to the master process
is shown in figure 3.

Slave processes for its part, were concerned with generating a pair of offsprings
from the pair of parents passed by the master, evaluating them, and sending the
new chromosomes obtained and its fitness to master. They also generated and
evaluated pairs of immigrants, randomly obtained, when master requested them.
Slaves would generate and evaluate chromosomes until the master send them the
end signal. The algorithm used by slaves is shown in figure 4.

while not signal to quit

get master message: pvm_recv();

if parents provided

generate 2 offsprings

else

generate 2 inmigrants

endif

for each generated chromosome

decode chromosome

evaluate chromosome

endfor

send chromosomes and fitness to master: pvm_send();

endwhile

quit

Fig. 4. Slave Process Algorithm

5 Hardware and Software Description

The cluster used in this work had 14 PC’s with AMD K7 500 MHz processors,
384 MB of RAM memory and a hard drive of 7GB each of them. The nodes
(1 Master + 13 Slaves) were connected by Fast-Ethernet switch. The operating
system was Linux (Red-Hat 6.1).

The algorithm was implemented using a toolbox of parallel processing, de-
veloped in Matlab by Baldomero, J.F., [2]: PVMTB (Parallel Virtual Machine
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Fig. 5. High level overview of PVM

ToolBox), based on the standard library PVMTB. With PVMTB, Matlab users
can quickly build parallel programs, using a message passing system like PVM.

Figure 5 shows a high level overview diagram of PVMTB. The toolbox makes
PVM and Matlab-API (Application Program Interface) calls to enable messages
between Matlab processes.

6 Performance Results

After 4 executions of the parallel algorithm, to tune the controller in figure 1,
an average of the times of execution and the speedups obtained, was calculated.
Each execution was repeated for each possible number of processors. Results are
shown in figure 6, and its numeric values are grouped in table 1.

Fig. 6. (a) Speedup vs. number of computers. (b) Time of execution vs. number of
computers

7 Conclusions

Features of evolutionary algorithms make them appropriated to deal with prob-
lems, difficult to be solved by other methods. A drawback is its high computa-
tional cost, making them impossible to be applied to solve complex problems, in
some cases. But evolutionary algorithms are easily parallelized by nature, and
clusters of PC’s provide a low-cost alternative to supercomputers.
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Table 1. Speedup and Time of execution vs. number of computers

Time of execution Standard deviation
Number of computers (seg.) Speedup (speedup)

1 8905.9259 1 0
2 7953.4766 1.1197555 0.0079589
3 4597.6172 1.9388577 0.0611588
4 2991.8349 2.9776865 0.0541746
5 2310.3739 3.8557793 0.0610961
6 1904.5179 4.6804295 0.1380201
7 1566.8359 5.6894018 0.1702718
8 1392.8489 6.3950083 0.0752763
9 1312.2312 6.7910607 0.1919798
10 1194.6286 7.4551005 0.0350726
11 1087.4028 8.1928836 0.1823867
12 1034.5336 8.6091675 0.0984071
13 941.04137 9.4676986 0.2028066
14 890.80885 10.023033 0.5184515
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Cluj-Napoca, 3400, Romania
2 School of Computer Science and Engineering,

Chung-Ang University, Seoul, South Korea,
cgrosan@cs.ubbcluj.ro, ajith.abraham@ieee.org, hansy@cau.ac.kr

Abstract. An Intrusion Detection System (IDS) is a program that an-
alyzes what happens or has happened during an execution and tries to
find indications that the computer has been misused. An IDS does not
eliminate the use of preventive mechanism but it works as the last defen-
sive mechanism in securing the system. This paper evaluates the perfor-
mances of Multi-Expression Programming (MEP) to detect intrusions in
a network. Results are then compared with Linear Genetic Programming
(LGP) approach. Empirical results clearly show that genetic program-
ming could play an important role in designing light weight, real time
intrusion detection systems.

1 Introduction

An intrusion is defined as any set of actions that attempt to compromise the
integrity, confidentiality or availability of a resource. Intrusion detection is clas-
sified into two types: misuse intrusion detection and anomaly intrusion detection
[13]. Misuse intrusion detection uses well-defined patterns of the attack that ex-
ploit weaknesses in system and application software to identify the intrusions.
These patterns are encoded in advance and used to match against the user be-
havior to detect intrusion. Anomaly intrusion detection uses the normal usage
behavior patterns to identify the intrusion. The normal usage patterns are con-
structed from the statistical measures of the system features. The behavior of
the user is observed and any deviation from the constructed normal behavior is
detected as intrusion [7], [15]. Data mining approaches for intrusion detection
were first implemented in mining audit data for automated models for intrusion
detection [2], [6], [9]. Several data mining algorithms are applied to audit data
to compute models that accurately capture the actual behavior of intrusions as
well as normal activities. Audit data analysis and mining combine the associ-
ation rules and classification algorithm to discover attacks in audit data. Soft
Computing (SC) is an innovative approach to construct computationally intel-
ligent systems consisting of artificial neural networks, fuzzy inference systems,
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approximate reasoning and derivative free optimization methods such as evo-
lutionary computation etc. [14]. This paper compares a Genetic Programming
(GP) technique performance – Multi-Expression Programming (MEP) – with
Linear Genetic Programming (LGP) [3], Support Vector Machines (SVM) [16]
and Decision Trees (DT) [5]. Rest of the paper is organized as follows. Section
2 provides the technical details of MEP. In Section 3, a description of the intel-
ligent paradigms used in experiments is given. Experiment results are presented
in Section 4 and some conclusions are also provided towards the end.

2 Multi Expression Programming (MEP)

A GP chromosome generally encodes a single expression (computer program). By
contrast, Multi Expression Programming (MEP)[11], [12] chromosome encodes
several expressions. The best of the encoded solution is chosen to represent the
chromosome (by supplying the fitness of the individual).

The MEP chromosome has some advantages over the single-expression chro-
mosome especially when the complexity of the target expression is not known.
This feature also acts as a provider of variable-length expressions. Other tech-
niques (such as Gramatical Evolution (GE) [14] or Linear Genetic Programming
(LGP) [4]) employ special genetic operators (which insert or remove chromosome
parts) to achieve such a complex functionality.

2.1 Solution Representation

MEP genes are (represented by) substrings of a variable length. The number
of genes per chromosome is constant. This number defines the length of the
chromosome. Each gene encodes a terminal or a function symbol. A gene that
encodes a function includes pointers towards the function arguments. Function
arguments always have indices of lower values than the position of the function
itself in the chromosome.

The proposed representation ensures that no cycle arises while the chro-
mosome is decoded (phenotypically transcripted). According to the proposed
representation scheme, the first symbol of the chromosome must be a terminal
symbol. In this way, only syntactically correct programs (MEP individuals) are
obtained.

An example of chromosome using the sets F= {+, *} and T= {a, b, c, d} is
given below:

1: a
2: b
3: + 1, 2
4: c
5: d
6: + 4, 5
7: * 3, 6
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The maximum number of symbols in MEP chromosome is given by the for-
mula:

Number of Symbols = (n+1) * (Number of Genes – 1) + 1,
where n is the number of arguments of the function with the greatest number of
arguments.

The maximum number of effective symbols is achieved when each gene (ex-
cepting the first one) encodes a function symbol with the highest number of
arguments. The minimum number of effective symbols is equal to the number of
genes and it is achieved when all genes encode terminal symbols only.

The translation of a MEP chromosome into a computer program represents
the phenotypic transcription of the MEP chromosomes. Phenotypic translation
is obtained by parsing the chromosome top-down. A terminal symbol specifies
a simple expression. A function symbol specifies a complex expression obtained
by connecting the operands specified by the argument positions with the current
function symbol.

For instance, genes 1, 2, 4 and 5 in the previous example encode simple
expressions formed by a single terminal symbol. These expressions are:

E1 = a,
E2 = b,
E4 = c,
E5 = d,

Gene 3 indicates the operation + on the operands located at positions 1
and 2 of the chromosome. Therefore gene 3 encodes the expression: E3 = a
+ b. Gene 6 indicates the operation + on the operands located at positions 4
and 5. Therefore gene 6 encodes the expression: E6 = c + d. Gene 7 indicates
the operation * on the operands located at position 3 and 6. Therefore gene 7
encodes the expression: E7 = (a + b) * (c + d). E7 is the expression encoded by
the whole chromosome.

There is neither practical nor theoretical evidence that one of these ex-
pressions is better than the others. This is why each MEP chromosome is
allowed to encode a number of expressions equal to the chromosome length
(number of genes). The chromosome described above encodes the following
expressions:

E1 = a,
E2 = b,
E3 = a + b,
E4 = c,
E5 = d,
E6 = c + d,
E7 = (a + b) * (c + d).

The value of these expressions may be computed by reading the chromosome
top down. Partial results are computed by dynamic programming and are stored
in a conventional manner.
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Due to its multi expression representation, each MEP chromosome may be
viewed as a forest of trees rather than as a single tree, which is the case of
Genetic Programming.

2.2 Fitness Assignment

As MEP chromosome encodes more than one problem solution, it is interesting
to see how the fitness is assigned.

The chromosome fitness is usually defined as the fitness of the best expression
encoded by that chromosome.

For instance, if we want to solve symbolic regression problems, the fitness of
each sub-expression Ei may be computed using the formula:

f(Ei) =
n∑

k=1

|ok,i − wk|,

where ok,i is the result obtained by the expression Ei for the fitness case k and
wk is the targeted result for the fitness case k. In this case the fitness needs to
be minimized.

The fitness of an individual is set to be equal to the lowest fitness of the
expressions encoded in the chromosome:

When we have to deal with other problems, we compute the fitness of each
sub-expression encoded in the MEP chromosome. Thus, the fitness of the en-
tire individual is supplied by the fitness of the best expression encoded in that
chromosome.

3 Intelligent Paradigms

3.1 Linear Genetic Programming (LGP)

Linear genetic programming is a variant of the GP technique that acts on linear
genomes [4]. Its main characteristics in comparison to tree-based GP lies in that
the evolvable units are not the expressions of a functional programming language
(like LISP), but the programs of an imperative language (like c/c ++). An alter-
nate approach is to evolve a computer program at the machine code level, using
lower level representations for the individuals. This can tremendously hasten the
evolution process as, no matter how an individual is initially represented, finally
it always has to be represented as a piece of machine code, as fitness evaluation
requires physical execution of the individuals.

3.2 Support Vector Machines

Support Vector Machines [16] have been proposed as a novel technique for in-
trusion detection. A Support Vector Machine (SVM) maps input (real-valued)
feature vectors into a higher dimensional feature space through some nonlinear
mapping. These are developed on the principle of structural risk minimization.
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SVM uses a feature called kernel to solve this problem. Kernel transforms linear
algorithms into nonlinear ones via a map into feature spaces.

3.3 Decision Trees

Decision tree induction is one of the classification algorithms in data mining [5].
Each data item is defined by values of the attributes. The Decision tree classifies
the given data item using the values of its attributes. The main approach is
to select the attributes, which best divides the data items into their classes.
According to the values of these attributes the data items are partitioned. This
process is recursively applied to each partitioned subset of the data items. The
process terminates when all the data items in current subset belongs to the
same class.

4 Experiment Setup and Results

The data for our experiments was prepared by the 1998 DARPA intrusion detec-
tion evaluation program by MIT Lincoln Labs [10]. The data set has 41 attributes
for each connection record plus one class label as given in Table 1. The data set
contains 24 attack types that could be classified into four main categories Attack
types fall into four main categories:

DoS: Denial of Service
Denial of Service (DoS) is a class of attack where an attacker makes a computing
or memory resource too busy or too full to handle legitimate requests, thus
denying legitimate users access to a machine.
R2L: Unauthorized Access from a Remote Machine
A remote to user (R2L) attack is a class of attack where an attacker sends
packets to a machine over a network, then exploits the machine’s vulnerability
to illegally gain local access as a user.
U2Su: Unauthorized Access to Local Super User (root)
User to root (U2Su) exploits are a class of attacks where an attacker starts
out with access to a normal user account on the system and is able to exploit
vulnerability to gain root access to the system.
Probing: Surveillance and Other Probing
Probing is a class of attack where an attacker scans a network to gather in-
formation or find known vulnerabilities. An attacker with a map of machines
and services that are available on a network can use the information to look for
exploits.

Our experiments have two phases namely training and testing phases. In
the training phase, MEP models were constructed using the training data to
give maximum generalization accuracy on the unseen data. The test data is
then passed through the saved trained model to detect intrusions in the testing
phase. The 41 features are labeled as shown in Table 1 and the class label is
named as AP.
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Table 1. Variables for intrusion detection data set

Variable No. Variable name Variable type Variable label

1 duration continuous A
2 protocol type discrete B
3 service discrete C
4 flag discrete D
5 src bytes continuous E
6 dst bytes continuous F
7 land discrete G
8 wrong fragment continuous H
9 urgent continuous I
10 hot continuous J
11 num failed logins continuous K
12 logged in discrete L
13 num compromised continuous M
14 root shell continuous N
15 su attempted continuous O
16 num root continuous P
17 num file creations continuous Q
18 num shells continuous R
19 num access files continuous S
20 num outbound cmds continuous T
21 is host login discrete U
22 is guest login discrete V
23 count continuous W
24 srv count continuous X
25 serror rate continuous Y
26 srv serror rate continuous X
27 rerror rate continuous AA
28 srv rerror rate continuous AB
29 same srv rate continuous AC
30 diff srv rate continuous AD
31 srv diff host rate continuous AE
32 dst host count continuous AF
33 dst host srv count continuous AG
34 dst host same srv rate continuous AH
35 dst host diff srv rate continuous AI
36 dst host same src port rate continuous AJ
37 dst host srv diff host rate continuous AK
38 dst host serror rate continuous AL
39 dst host srv serror rate continuous AM
40 dst host rerror rate continuous AN
41 dst host srv rerror rate continuous AO

This data set has five different attack types (classes) namely Normal, DoS,
R2L, U2R and Probes. The training and test data comprises of 5,092 and 6,890
records respectively [8]. All the training data were scaled to (0-1). Using the
data set, we performed a 5-class classification.
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The settings of various linear genetic programming system parameters are
of utmost importance for successful performance of the system [1]. The popu-
lation size was set at 120,000 and a tournament size of 8 is used for all the 5
classes. Crossover and mutation probability is set at 65-75% and 75-86% respec-
tively for the different classes. Our trial experiments with SVM revealed that
the polynomial kernel option often performs well on most of the datasets. We
also constructed decision trees using the training data and then testing data was
passed through the constructed classifier to classify the attacks [13]. Parameters

Table 2. Parameters used by MEP

Attack type
Parameter value
Pop. Size Generations Crossover

(%)
No. of
mutations

Chromosome
length

Normal 100 100 0.9 3 30

Probe 200 200 0.9 4 40

DOS 500 200 0.8 5 40

U2R 20 100 0.9 3 30

R2L 800 200 0.9 4 40

Table 3. Performance comparison

Attack type
Classification accuracy on test data set (%)
MEP DT SVM LGP

Normal 99.82 99.64 99.64 99.73
Probe 95.52 99.86 98.57 99.89
DOS 98.91 96.83 99.92 99.95
U2R 99.75 68.00 40.00 64.00
R2L 99.72 84.19 33.92 99.47

Table 4. MEP evolved functions for the attack classes

Attack type Evolved Function

Normal var12 * log2(var10 + var3)
Probe (log2(var2) < (fabs((var36 * var27) > (var27 + var35 –

var34) ? (var35 * var27) : (var27 + var35 – var34))) ?
(log2(var2)) : (fabs((var36 * var27) > (var27 + var35 –
var34) ? (var36 * var27) : (var27 + var35 – var34)));

DOS 0.457∗(var8+(ln(var6))∗(lg(var41))−−var40+var23+
var8)

U2R sin(var14) −−var33
R2L 0.36 + (var11 < 0.086 ? var11 : 0.086 + 0.086) > (var6

> (log2(log2(var12 * var3))) ? var6 : (log2(log2(var12 *
var3)))) ? (var11 < 0.086 ? var11 : 0.086 + 0.086) : (var6
> (log2(log2(var12 * var3))) ? var6 : (log2(log2(var12 *
var3)))) + var6
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Fig. 1. Evolutionary learning of the different attack types
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used by MEP are presented in Table 2. We made use of +, - , *, /, sin, cos, sqrt,
ln, lg, log2, min, max, and abs as function sets.

In Table 4 the variable combinations evolved by MEP are presented. Results
presented in Table 3 are based on these evolved functions.

As evident from Table 3, MEP gives the best results for detecting Normal
patterns, U2R and R2L attacks. While DT, SVM and LGP did not perform well
U2R attacks, MEP obtained the best results for this class (99.76% accuracy).
Results for MEP presented in this table are obtained by applying the test data
using the training function which gave the best results during training.

In Figure 1, the classification accuracy for the best results obtained for train-
ing data, results obtained for the test data using the best training function and
the best results obtained for the test data are depicted. Figure 1 (a) corresponds
to Normal patterns, Figure 1 (b) corresponds to Probe, Figure 1 (c) corresponds
to DOS Figure 1 (d) corresponds to U2R and Figure 1 (e) corresponds to R2L
respectively.

In some classes the accuracy figures tend to be very small and may not be
statistically significant, especially in view of the fact that the 5 classes of patterns
differ in their sizes tremendously. For example only 27 data sets were available
for training the U2R class. More definitive conclusions can only be made after
analyzing more comprehensive sets of network traffic.

5 Conclusions

In this paper, we have illustrated the importance of genetic programming based
techniques for modeling intrusion detection systems. MEP outperforms LGP for
three of the considered classes and LGP outperform MEP for two of the classes.
MEP classification accuracy is grater than 95% for all considered classes and for
four of them is greater than 99.65%. It is to be noted that for real time intrusion
detection systems MEP and LGP would be the ideal candidates because of its
simplified implementation.
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Container Fill Problem
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Abstract. This article shows some techniques based on simulated an-
nealing and genetic alghoritms for the resolution of a filling problem of
a container of two dimensions using rectangular pieces of sizes not con-
gruent. This problem is quite related to problems like bin-packing or
strip-packing. The comparative was made using several type problems
and having into account parameters like run time, number of solutions
that converge to the optimum one and quality of the found non-optimum
solutions.

1 Introduction

Most problems found in industry and government are either computationally
intractable by their nature, or sufficiently large so as to preclude the use of
exact algorithms. In such cases, heuristic methods are usually employed to find
good, but not necessarily guaranteed optimum solutions.

The effectiveness of these methods depends upon their ability to adapt to
a particular realization, avoid to go into local optima, and exploit the basic
structure of the problem, such as a network or a natural ordering among its
components.

Furthermore, restart procedures, controlled randomization, efficient data struc-
tures, and preprocessing are also beneficial. Building on these notions, various
heuristic search techniques have been developed that have demonstrably im-
proved our ability to obtain good solutions to difficult combinatorial optimization
problems. The most promising of such techniques include simulated annealing
[10], tabu search [8], ant colony optimization [11], genetic algorithms [9] and
GRASP (Greedy Randomized Adaptive Search Procedures) [7].

In this article is set out the problem of filling a container in its bi-dimensional
version, which consists of locating on a rectangular surface of fixed length and
width, also rectangular pieces of a certain set, so that it does not find overlapping
nor spillage and that the occupied space is the maximum (the totality of the
surface, if possible).

There are two potential approaches to the problem depending on the possibil-
ity or not to be able to apply turns to the pieces, only the problem without turns
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was treated. This problem is included within the packing and cutting problems,
problems widely studied due to its importance in certain industrial and trans-
port sectors [1] [3]. This kind of problems belongs to the class of non-polynomial
problems (NP), therefore an exact solution in a reasonable time cannot be given,
in spite of having algorithms like the comprehensive search that could find this
solution.

The heuristic techniques acquire a great importance in the solution of these
other similar problems since they provide relatively good solutions in an ac-
ceptable time. The problems are much more complex in practice, such as the
problem of cutting nonrectangular pieces of different forms, but this charac-
teristic increases the complexity, therefore the comparison is restricted to the
so-called rectangular problems, that is to say, those in which the objects to pack
or to cut have a rectangular form. This paper showns two simulated annealing
algorithm and one genetic algorithm for the solution of this kind of problem.

2 Simulated Annealing

Simulated annealing is a generalization of a Monte Carlo method for examining
the equations of state and frozen states of n-body systems [6]. The concept is
based on the manner in which liquids freeze or metals re-crystallize in the process
of annealing. In an annealing process a melt, initially at high temperature and
disordered, is slowly cooled so that the system at any time is approximately
in thermodynamic equilibrium. As cooling proceeds, the system becomes more
ordered and approaches a ”frozen” ground state at T = 0. Hence the process can
be thought of as an adiabatic approach to the lowest energy state. If the initial
temperature of the system is too low or cooling is done insufficiently slowly the
system may become quenched forming defects or freezing out in meta-stable
states (ie. trapped in a local minimum energy state).

The original Metropolis scheme was that an initial state of a thermodynamic
system was chosen at energy E and temperature T , holding T constant the initial
configuration is perturbed and the change in energy dE is computed.

If the change in energy is negative the new configuration is accepted. If
the change in energy is positive it is accepted with a probability given by
the Boltzmann factor e−

dE
T . This processes is then repeated sufficient times

to give good sampling statistics for the current temperature, and then the tem-
perature is decremented and the entire process repeated until a frozen state is
achieved at T = 0.

The connection between this algorithm and mathematical minimization was
first noted by Pincus, but it was Kirkpatrick [10] who proposed that it form the
basis of an optimization technique for combinatorial (and other) problems. The
current state of the thermodynamic system is analogous to the current solution to
the combinatorial problem, the energy equation for the thermodynamic system
is analogous to at the objective function, and ground state is analogous to the
global minimum. The major difficulty (art) in implementation of the algorithm
is that there is no obvious analogy for the temperature T with respect to a free
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parameter in the combinatorial problem. Furthermore, avoidance of entrainment
in local minima (quenching) is dependent on the ”annealing schedule”, the choice
of initial temperature, how many iterations are performed at each temperature,
and how much the temperature is decremented at each step as cooling proceeds.

Two alternatives for the solution by means of techniques based on simulated
annealing appear next: The first is based on the original model of Metropolis,
the second supposes that a search for each temperature is done.

2.1 Algorithm of Metropolis

The laws of the thermodynamics say that to a temperature T the probability
of a power increase of magnitude dE can be approximated by P [dE] = e−

dE
kT ,

where k is a physical constant denominated Boltzmann
In the model of Metropolis a random disturbance in the system is generated

and the resulting changes of energy are calculated: if there is a power fall, the
change is accepted automatically; on the contrary, if a power increase takes
place, the change was accepted with a probability indicated by the previous
expression. The idea consists of beginning with a high temperature and to be
decreasing it very slowly until a base state is reached, in our case the temperature
is only a parameter of control of the probability of accepting a worsening in the
solution, nevertheless we used this nomenclature to state the similarity with the
physical process that serves as base to our algorithm. The code of the algorithm
of Metropolis would be.

S = Initial solution : T = Initialize : Gamma = Initialize
REPEAT
S∗ = M(S)
IF Eval(S∗) < Eval(S) THEN S = S∗ ELSE

IF Random(0, 1) < exp((Eval(S) − Eval(S∗))/(kT )) THEN S = S∗

ELSE S = S
T = T ∗ Gamma

UNTIL SHUTDOWN CRITERION.

where T is the temperature, k the constant of Boltzman, this constant appears
in the natural processes of crystallization but in this case it is only another
parameter of control which will take the value k = 1, Gamma is a constant that
takes a value between 0 and 1 and it is used to diminish T , imitating in this
form the cooling of the system and M() a function that generates a new solution
by means of a small disturbance, for example, it could be the function that was
in the previous section.

This type of algorithms, allows with a certain probability, that tends to zero
when the number of iterations tends to infinite, the worsening in the evaluation
of the solutions, which will allow us to leave possible local minimums.

Three groups of tests was made, changing the different parameters of the
algorithm to try to see which ones are better adapted to the treated problems.
In this first experiment the algorithm was applied 100 times with 500 iterations
each, the initial temperature, 100, and a Gamma = 0.99. In the second ex-
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Fig. 1. Comparison of different parameters in Algorithm of Metropolis

periment the algorithm was applied 100 times with 500 iterations each, thesame
initial temperature and a Gamma = 0.95. In the third experiment the algorithm
was applied 100 times with 500 iterations each, the initial temperature, 10, and
a Gamma = 0.99. If a comparative of the results of the three experiments is
made, several conclusions can be drawn: The best results were obtained in the
third experiment, nevertheless, the best average aptitude was obtained in the
second, this is due to the formula of acceptance of solutions

IF Eval(S∗) < Eval(S) THEN S = S∗

ELSE
IF Random(0, 1) < exp((Eval(S) − Eval(S∗))/(kT )) THEN S = S∗

ELSE S = S

As the temperature faster decreases and lower is, also the probability of
allowing a worsening of the solution is smaller, for this reason, in experiment
two the temperature descends quickly then exists a convergence towards local
minimums and therefore the average aptitude is smaller, in experiment one the
temperature descends very slowly and at any moment there is possibility of
accepting a solution of worse aptitude, for that reason, the average aptitude
is worse. In case three the initial temperature smaller, the stabilization of the
solutions takes place before, but as the temperature descends very slowly it does
not lose the possibility of leaving global minimums until the end. With the second
problem several groups of tests was made.

In the first experiment the algorithm was applied 100 times with 500 iter-
ations each, the initial temperature, 10 and a Gamma = 0.99. In the second
experiment the algorithm was applied 50 times with 1000 iterations each, the
initial temperature, 10000, and a Gamma = 0.99.As we can observe the results
in the first experiment have been better than in the second, as much in time
as in average aptitude, for that reason we make a third experiment with 1000
iterations and the parameters of the first experiment adapted to the number of
iterations, that is to say, the initial temperature must be of 1515 so that the final
one agrees with the one of the first experiment. In the third experiment the algo-
rithm was applied 100 times with 1000 iterations each, then initial temperature,
1515, and Gamma = 0.99.

As it is observed there exists a light improvement of the average aptitude as
well as of the best found aptitude. Taking as a base the algorithms of metropo-
lis, in the early 80s Kirkpatrick and Cerny developed algorithms for the design
of circuits VLSI and the resolution of TSP (Traveling Salesman Problem) and
showed how they could be applied to combinatorial optimization problems, like
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Fig. 2. Experiment 1: Results for case 2

Fig. 3. Experiment 2: Results for case 2

Fig. 4. Experiment 3: Results for case 2

the one which occupies us, the algorithm that they developed was termed Sim-
ulated Annealing [2], which is the new algorithm that was treated.

A Simulated Annealing Algorithm Alternative. The basic difference be-
tween the former algorithm and the following one is that it search for each
temperature [1] [2], which is translated in the following code.

S = Initial solution : T = Initialize : Gamma = Initialize
Niter = Number of iterations that we wished to be produced
REPEAT

REPEAT
S∗ = M(S)
IF Eval(S∗) < Eval(S) THEN S = S∗

ELSE
IF Random(0, 1) < exp(Eval(S)−Eval(S∗))/T ) THEN S = S∗

ELSE S = S
UNTIL NUMBER OF ITERATIONS = Niter
T= T * Gamma

UNTIL SHUTDOWN CRITERION.
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Fig. 5. Results SA for case 1

Fig. 6. Results SA for case 2

This type of algorithms, allows with a certain probability, that tends to zero
when the number of iterations tends to infinite, the worsening in the evalu-
ation of the solutions, which will allow us to leave possible local minimums.
Unlike the previous algorithm, this algorithm makes an exploration for each
temperature, which increases the time necessary for its execution but also the
probability of finding the global optimum. Two groups of tests was made,
changing the different parameters of the algorithm to try to see which ones
are better adapted to our problems: In the first experiment the algorithm was
applied with (Times, Iterations, Initial Temperature, Gamma)=(100, 500 , 100,
0, 99). These parameters were the best ones in the previous section. Niter =
10, that is that ten iterations was madee for each power state (for each
temperature).

In the second experiment the algorithm was applied with (100, 200, 100,
0, 99). These parameters were the best ones in the Algorithm of Metropolis,
with. Niter = 20.

Three groups of tests was made with the second problem changing the dif-
ferent parameters of the algorithm to try to see which ones are better adapted
to this problem.

– First experiment. The algorithm was applied with (15, 500, 1515, 0.99).
Niter = 20.

– Second experiment. The algorithm was applied with (15, 200 ,, 10000, 0.95).
Niter = 30.

– Third experiment. The algorithm was applied with (25, 500 , 10,0.99). Niter
= 30.
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Fig. 7. Results GA for case 1

It is observed that the results of the third experiment are substantially bet-
ter than those of first and second experiment, nevertheless, the necessary time
was greater also. It seems logical to think that the parameters used in the third
case are more appropriate that the two firsts, in the first case the final temper-
ature was of 9.95, a too high temperature that allows worsening with too much
probability and therefore exists a excessively random behavior, in the second
experiment this final temperature was of 0.35, therefore, the algorithm tends
to allow worsening less and less and therefore the search can be considered less
random. An improvement in the average aptitude exists and the time was even
smaller, nevertheless, the global optimum was not found. The results of third
experiment were quite good, the global optimum was found, the 13, 33% of the
solutions had a satisfactory convergence, however, the necessary time was greater
than in the other experiments. Another interesting point is the increase in the
number of explorations for each power.

3 Genetic Algorithms

The Genetic Algorithms (AGs) introduced by John Holland in 1970 [4] are tech-
niques of optimization that are based on concepts like the natural and genetic
selection. In this method the variables are represented like genes in a chromo-
some [4].

In this case the representation of the solutions is the already presented, the
initial possible solutions population was generated of randomly, the evaluation
function was the free space, the crossing operator was PMX that along with BLF
is the one that presents better results [5], the selection was made by means of
the roulette method and a mutation was a transposition of two elements of the
solution.. A series of tests of 100 executions was made with the first problem
and the following parameters:

(Recombination, Mutation, Initial solution, Number of solution, [Number of
iterations with solution, Number of iterations without solution])

– Recombination: The recombination was by pairs using operator PMX and
passing to the following generation the children.

– Mutations: The mutations was by change, and its probability was of 3%.
– Initial solutions: Random.
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Fig. 8. Results GA for case 1

– Number of solutions: 20.
– Number of iterations: 1000 or to find the optimum one.

(PMX & passing the childen, 3%, Random, 20, [1000, ])

The total time of execution was of 3, 077 seconds, that is , 51 minutes, to speed
up the tests we will include a new criterion of shutdown, if in 100 iterations the
best fitness found does not experience improvement we finalized the experiment.

Five experiments with 100 executions was made with the following
parameters:

1. (PMX & passing the childen, 3%, Random, 20, [1000, 1000]).
2. (PMX & passing the childen, 5%, Random, 20, [1000, 100]).
3. (PMX & passing the childen, 3%, Random, 20, [1000, 100]).

We calculate the recombination probability by adding 20 to each one of the
fitness of the solutions, to equal the probabilities and avoid a premature
convergence to local minimums.

SF =
∑
i

(Fit(Si) + 20); SiA = SF
Fit(Si)

;

SFI =
∑
i

SiA; P (Si) = Fit(Si)+20
SFI .

4. (PMX & passing the childen, 3%, Random, 20, [1000, 100]).
We calculate the recombination probability by elevating to the fourth power
the original probability, this favors the propagation of the solutions with
better fitness, but also the danger to fall in local minimums.

SF =
∑
i

Fit(Si); SiA =
(

SF
Fit(Si)

)4

;

SFI =
∑
i

SiA; P (Si) = Fit(Si)+20
SFI .

5. (PMX & passing the best one, 3%, Random, 20, [1000, 100]).

The best experiment was the first one for the time used and for the results
obtained. We did not put the criterion of shutdown of 100 iterations without im-
provement, obtained many more convergences, 74% as opposed to 49%, which
represents a 51% of convergences, nevertheless, the used time went as 3077 sec-
onds opposed to 636, which supposes a 384% but time.
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4 Conclusions

This kind of problems is very treatable with techniques based on simulated
annealing. The genetic algorithms present initially the problem of the suitable
election of the representation of the solutions.

The genetic algorithms present good results because a certain intermediate
solution contains a sub-chain that comprises the optimal solution, and when
crossing several of these solutions those sub-chains are prospering and joining
themselves until obtaining the optimum one, nevertheless, in this problem this
is not fulfilled since what is evaluated is the space occupied within the container,
however, in the crossing of the genetic algorithm the arrangements of pieces are
crossed.

Remark: All experiments were made in a computer with Pentium IV, CPU 2,4
GHz, 522,228 KB of RAM, and. the code of programs were Visual BASIC code.
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Abstract. This paper describes Attribute Grammar Evolution (AGE),
a new Automatic Evolutionary Programming algorithm that extends
standard Grammar Evolution (GE) by replacing context-free grammars
by attribute grammars. GE only takes into account syntactic restrictions
to generate valid individuals. AGE adds semantics to ensure that both
semantically and syntactically valid individuals are generated. Attribute
grammars make it possible to semantically describe the solution. The
paper shows empirically that AGE is as good as GE for a classical prob-
lem, and proves that including semantics in the grammar can improve
GE performance. An important conclusion is that adding too much se-
mantics can make the search difficult.

1 Introduction

1.1 Syntax and Semantics of High Level Programming Languages

The differences between syntax and semantics in high level programming lan-
guages are rather artificial.

Turing Machines are associated to Chomsky 0 grammars [1], while the syntax
of high level programming languages is usually expressed by means of context
free grammars. Context free grammars are associated to pushdown automata,
which have less expressive power than Turing Machines. The expressive power
gap between Chomsky 0 and context free grammars is usually called the “seman-
tics” of high level programming languages. This gap mainly deals with context
dependent constructions, such as the mandatory declaration of the variables be-
fore their use or, the constrains about number and type of the arguments in
functions calls, which must agree with their declaration.

1.2 Attribute Grammars

Attribute grammars [2] are one of the tools used to describe high level pro-
gramming languages completely (their syntax and their semantics). Attribute
grammars extend context free grammars by adding these components to them:

– Each non terminal symbol has a set of attributes. Attributes are similar to
the variables in programming languages; they have a name and their values
belong to a given domain.

– Each rule contains expressions to compute the value of the attributes.

J. Mira and J.R. Álvarez (Eds.): IWINAC 2005, LNCS 3562, pp. 182–191, 2005.
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A detailed description of attribute grammars and some examples of their use
can be found in references [3, 4]

1.3 Grammar Evolution (GE)

GE [5] is an automatic programming evolutionary algorithm independent of
the target programming language, which includes a standard representation of
genotypes as strings of integers (codons), and a context free grammar, as inputs
for the deterministic mapping of a genotype into a phenotype. This mapping
minimizes the generation of syntactically invalid phenotypes. Genetic operators
act at the genotype level, while the fitness function is evaluated on the pheno-
types.

The genotype to phenotype mapping is an algorithm that iterates on the
string of codons and derives words by applying the context free grammar. It
starts with the first codon and the axiom of the grammar, and finishes when the
genotype is exhausted or when there are no more non-terminal symbols in the
current derived word. This last condition means that the mapping has derived
a word belonging to the language of the grammar, i. e. a syntactically correct
program.

To process each codon, the next non terminal symbol is selected from the
current string (usually the leftmost one), the (n+1) rules applicable to the non
terminal are enumerated (from 0 to n), and the current codon is mapped into
one of them (usually by computing codon mod n).

1.4 Practical Considerations

In the first step, this paper solves a symbolic regression problem by means of
GE. The algorithm has been implemented in Java, we have tried to keep as close
as possible to the original description in reference[5].

The symbolic regression problem tries to find a symbolic expression fitting a
given function on a set of control points.

In Genetic Programming [6], most of the problems can be reduced to the
symbolic regression problem. Therefore, this paper will be restricted to that
problem. The target function chosen is f (x) = x4 + x3 + x2 + x

The solution of this problem in [5] is done by means of the following features
and parameters:

Several characteristics of our experiments are the same as in [5]:

– The context free grammar

<expr>::=<expr> + <expr>
|<expr> - <expr>
|<expr> * <expr>
|(<expr>)
|<pre op>(<expr>)
|<var>
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<pre op>::=sin
|cos
|exp
|log

<var>::=x

– The set of control points: 21 values uniformly taken from [−1, 1].
– The fitness function: the sum of the absolute error over the set of the 21

control points.
– The population size: 500.
– The length of the genotypes: variable length, initially between 1 and 10.
– Codons: they belong to the [0, 256]interval.
– Probability of crossover: 0.9.
– Bit mutation with probability 0.1.

We have tried to reproduce the same example, with the following differences:

– The above grammar is ambiguous, as it does not define any operator prece-
dence. In the Java application, we have removed the ambiguity and designed
the associated pushdown automata to make the evaluation of the individuals
easier. For the shake of simplicity, the grammar appearing in the remainder
of this paper is still the ambiguous version.

– The high cumulative success frequency described in reference[5] is not reached
unless the parents are chosen with a fitness proportional strategy, and the
next populations are generated by means of a generational scheme, rather
than a steady state scheme.

– The size of the genotypes increase with the number of generations. It has
been empirically observed that the number of unused codons also increases.
The crossover operator described in reference [5] uses one single random
crossover point. Thus, the number of descendants that map to the same
phenotype as their parents, correspondingly increases. To solve this situation,
we have restricted the crossover point choice to the used portion of each
genotype, rather than to the whole genotype.

– In our work, mutation changes a single codon by a random value in
the [0, 256]interval. The best probability rate of mutation was fond em-
pirically as 0.5, although the performance is very similar for mutations in
{0.5, 0.7, 0.8}.

2 Attribute Grammar Evolution (AGE)

2.1 Previous Similar Works

This is not the first attempt to extend genetic programming by adding the
complete description of a programming language: references [7, 8, 9, 10] describe
some Prolog based approaches. These algorithms are criticized by some authors
[11, 12] because the logic engine makes it difficult to control some parameters
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of the search algorithm, and because the backtracking tends to worsen the final
performance and does not ensure that the computation finishes in all the possible
cases.

AGE mainly differs from the previous references in the following:

– It does not depend on any programming paradigm.
– Ross and Hussain’s works represent the genotypes by means of trees.
– Man Leung Wong and Kwong Sak Leung’s works are mainly interested in

data mining and machine learning.

2.2 An Algorithm to Evaluate the Attributes While Building the
Derivation Tree

Attribute grammars are exhaustively used in the design of parsers for program
translators. AGE uses them to derive the phenotypes. The attributes are eval-
uated by means of the derivation tree. Each time that a node of the tree is
expanded, the values of the attributes that can be evaluated are computed in
the following way:

– Attributes inherited from the parent symbol are evaluated directly.
– If the node symbol is prefixed by other symbols to the right of where it

appears, attributes inherited from the left siblings are also evaluated.
– After expanding the last child of a node, the parent synthesized attributes

are evaluated.

The axiom of the grammar has only synthesized attributes. The leaves of the
tree are associated to terminal symbols wihtout any attributes of their own, but
which may be used to input data into the derivation tree.

AGE uses the attributes to describe the conditions that a phenotype must
comply with to be considered semantically valid. As soon as one of these con-
straints is violated, the derivation process is aborted.

2.3 Modifying the Genotype to Phenotype Mapping

AGE adds the evaluation of the attributes to the previously described GE map-
ping. The following steps outline the algorithm applied to every codon in the
genotype:

1. Choose the leftmost non-terminal symbol in the current word.
2. Select in the tree the node associated with the symbol. This is the current

node.
3. Update the attributes in the derivation tree.
4. Number in zero origin the right hand sides of all the rules for this non-

terminal symbol.
5. Select the right hand side of the rule whose number equals codon mod number

of right hand sides for this non-terminal.
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Fig. 1. AGE genotype to phenotype mapping of x + cos (x). The attribute grammar
computes its value in x = 0
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6. Derive the next word by replacing the non-terminal by the selected right
hand side.

7. Insert a new node for each symbol to the right hand side of the rule and
make all the new nodes the children of the current one.

Figure 1 graphically shows the derivation of the expression x + cos (x)from a
genotype and the following attribute grammar:

<expr>::=<expr>1 <op> <expr>2{<expr>.v=<op>.f(<expr>1.v, <expr>2.v);}
|<pre op>(<expr>1){<expr>.v=<pre op>.f(<expr>1.v);}
|<var>{<expr>.v=<var>.v;}

<pre op>::=sin{<pre op>.f=cos;}
|cos{<pre op>.f=sin;}
|log{<pre op>.f=log;}

<op>::=+{<op>.f=+;}
|-{<op>.f=-;}
|*{<op>.f=*;}

<var>::=x{<var>.v=0;}

Where:

– Non-terminal symbols <expr> and <var> have an attribute v, that stands
for the value of the expression. Notice that the last rule inputs 0 as the value
of the variable x, the value of <var> attribute v.

– Non-terminal <pre op> and <op> have an attribute f that represents the
function that will be applied when computing the value of the expression.

– The association of an attribute to a symbol is represented by means of a dot
as in the C language.

2.4 GE vs. AGE Performance

Our first experiment avoids the generation of a phenotype that may be unde-
fined on any control point. This can only happen when the expression contains
log (subexpression) and the value of the subexpression is less or equal to 0.

The goal of the first experiment is estimating the possible loss of performance
due to the steps added to the mapping algorithm. We are not really improving
GE, because no new semantics is actually added to the algorithm. There are,
however, some differences between AGE and GE in this case: GE generates
semantically invalid phenotypes that will probably be punished with the worst
fitness value, but AGE prefentsthe generation of such expressions as soon as
possible.

This experiment uses the same parameters as those described for GE, except
for the following:

– The attribute grammar used is the following:

<expr>::=<expr>1 + <expr>2{<expr>.vi=<expr>1.vi+<expr>2.vi ∀i∈[0, 20]}
|<expr>1 - <expr>2{<expr>.vi=<expr>1.vi-<expr>2.vi∀i∈[0, 20]}
|<expr>1 * <expr>2{<expr>.vi=<expr>1.vi*<expr>2.vi∀i∈[0, 20]}
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|(<expr>1){<expr>.vi=<expr>1.vi ∀i∈[0, 20]}
|<pre op>(<expr>1){<expr>.vi=<pre op>.f(<expr>1.vi) ∀i∈[0, 20]}
|<var>{<expr>.vi=<var>.vi ∀i∈[0, 20]}

<pre op>::=sin{<pre op>.f=sin}
|cos{<pre op>.f=cos}
|exp{<pre op>.f=exp}
|log{<pre op>.f=log}

<var>::=x{<var>.v0=-1
<var>.v1=-0.9

<var>.v1=-0.8

...

<var>.v20=1}

This grammar is very similar to the one used in the genotype to pheno-
type mapping example. The main difference is the existence of 21 attributes (vi
∀i∈[0, 20]) to record the value of the expression on each control point.

– The probability of mutation has been empirically optimized to 0.7 as shown
in figure 2.

Fig. 2. AGE performance comparison after 500 runs. The worst performance corre-
sponds to a probability of mutation equals 0.1 and the best to 0.7
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Fig. 3. GE vs. AGE performance comparison after 500 runs with the best probability
of mutation (0.7). As with the rest of probabilities of mutation, there is no remarkable
performance change

Figure 3 shows the performance comparison between GE and AGE for the
best probability of mutation after 500 runs of the algorithm. As expected, there
is no remarkable improvement in performance. However, there neither is any
remarkable loss. So, we can deduce that AGE is as good as GE to solve this
problem. As many of the problems solved by GP are reducible to the symbolic
regression domain, we are optimistic about the generalization of thse results to
other kinds of problems.

The goal of our second experiment is to check if, after adding some semantics
to the grammar, the algorithm improves its performance. We shall add constrains
to consider invalid any phenotype that does not exactly fit the target function
in any of the three control points: -1, 0 or 1.

For this experiment, the probability of mutation is set to 0.7, one of the better
values both in GE and in AGE.

Figure 4 shows a significant improvement in performance after 500 runs of the
algorithm: the cumulative frequency of success grows faster and reaches higher
values.

It is worth noticing that, even although the semantic constrains are rather
loose, the improvement is significant. On the other hand, other tests have shown
that increasing too much the semantics causes bad performance. A possible
reason is that the expressive power of attribute grammars allows a full description
of the solution to the problem. But, in this case, the only valid phenotypes is the
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Fig. 4. AGE performance comparison with different semantic constrains. The improve-
ment in the performance after adding a rather loose constrain is significant

solutions ,and the search is not directed by the genetic engine: it really becomes
a random search.

This is a very important topic for further research: determining how many
semantics must be added to get the optimal performance.

3 Conclusions and Future Research

This work describes AGE (attribute grammar evolution), a new automatic evolu-
tionary programming algorithm that extends GE (grammar evolution) by adding
semantic constrains which make it possible the removal from the population of,
syntactically and semantically invalid phenotypes.

The differences with other approaches to genetic programming that use syn-
tactic and semantic descriptions are discussed in the paper.

It is shown that AGE is as good as GE for a standard problem in GP. It is
also proved that adding rather loose semantic constrains improves significantly
the performance of AGE.
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In the future, we plan to extend GE with different formal descriptions of
the programming language and to apply this approach to automatically solve
problems in other domains. We also plan to study in depth the determination
of the adequate semantics needed to get the optimal performance.
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Abstract. The paper presents a method to control evolution of pattern
in a knowledge fusion system. A self-adapt evaluation mechanism to as-
sign proper value dynamically to weight parameters is also described.
Some rules are defined with aid of the matrix theory to promise the
controllablity and describability to the evolution process. A new knowl-
edge object, called LKS (local knowledge state), that can redirect path
in knowledge fusion system and evolve to other knowledge object(s) is
formed in that model. Experimental results of a case study show that
it can improve the efficiency and reduce computational complexity of a
knowledge fusion system.

1 Introduction

1.1 Knowledge Fusion and Knowledge Engineering

Knowledge fusion is an important component of knowledge science and engineer-
ing, which can transform and integrate diversiform knowledge resources to gen-
erate new knowledge objects[1]. So information and knowledge from distributed
knowledge resources can be shared and cooperating. Presently, Multi-agent tech-
nology and grid computation method are used to integrate specifically knowledge
in a way, which pay more attention to implement the fusion process[2, 3, 4].

1.2 Knowledge Fusion Requires a Reduction of Computational
Complexity

Knowledge fusion will result in an enormous amount of knowledge base resources
on the web. Since ontology technologies carry the promise to enable widespread
sharing and coordinated use of networked knowledge resources with only one
logical base, we adopt a kind of meta-knowledge model to build a knowledge
fusion platform.

However, there are two limitations of those knowledge fusion systems. First,
distributed knowledge objects in those systems are massively. That complicates
allocation and management of knowledge resources. It will make the system
working inefficiently and a useless knowledge object may lead to a terrible waste

J. Mira and J.R. Álvarez (Eds.): IWINAC 2005, LNCS 3562, pp. 192–201, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Evolution and Evaluation in Knowledge Fusion System 193

of work. Second, structure of knowledge representation is relatively diversiform,
which leads to slather unify process[5, 6].

The purpose of this paper is to setup a controllable evolution process model
and present an evaluation method that can revises knowledge fusion process with
dynamic self-adjusted parameters. We start in the next section with a description
of the overall structure of the frameset. Section 3 introduces the evolution module
with a control matrix. The evaluation algorithm and the methods to revise fusion
parameters are showed in section 4. Section 5 describes a referential application
on a case study in a knowledge-based grid environment. This paper finishes with
a brief conclusion.

2 Architecture

The knowledge fusion framework focuses the evolution process and evaluation
method. Fig 1 shows the overall architecture.

Fig. 1. Overall architecture

Connotational formalized representation of distributed knowledge resources
should be described underlying certain rules and added into the ontology before a
knowledge fusion process can go on, while extracted meta-knowledge sets should
be registered into network path module of MKDS (meta-knowledge directory
service). Then the fusing algorithm runs on those knowledge resources’ new
structure, which will be called LKS (local knowledge state) in the paper. Through
evaluation and evolution, LKSs form global knowledge space that can be used
in applications. To setup the ontology base is an initial work of the frameset, so
we elaborate on this issue in the following.
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2.1 Ontology Base and Meta-knowledge Sets

Ontology base is a complex description sets. Let O and Oi denote the ontology
base and the ith object instance in it. The Oi will be used in the paper, which
is defined by

Oi = {(P i
j , T

i
j , D

i
j)} (1)

Where P i
j denotes the jth attribute of the object Oi, T i

j denotes the type of
P i

j , Di
j denotes its value, expression or behavior. The domain for variant j is

decided by its scope knowledge ontology[7, 8].
Let Sk denotes meta-knowledge sets of the kth knowledge base node that can

be defined by
Sk = {((Ck

1 , Ek
1 ), (Ck

2 , Ek
2 ), . . . , (Ck

n, Ek
n))} (2)

Where Ck
i denotes the ith character object of Sk, Ek

i denotes the description
content of Ck

i .
Relationships among character objects are not defined here because those

will be described in the ontology base.
In order to implement the interchanged process between meta-knowledge

sets and knowledge space, the definiendum (Ck
i , Ek

i ) stands for not embodied
characters but denotative objects of knowledge ontology. That operation must
be synchronous with the initialization of meta-knowledge sets.

To incarnate the relationships among diversiform meta-knowledge sets, fol-
lowing rules must be obeyed during the ontology base’s constructed proce-
dure.

Rule 1. If not-non relationship between Ck
i and Cl

j exists, CREAT (P k
m, T k

m,
Dk

m) ∈ Ok .
If (k �= l), CREAT (P l

n, T l
n, Dl

n) ∈ Ol.. Where P k
m = P l

n = “R(Ck
i , Cl

j)” and
Dk

m = Dl
n = R(Ck

i , Cl
j)

Rule 2. If none relationship between Ck
i and Cl

j exists, CREAT (P k
m, T k

m,
Dk

m) ∈ Ok .
If (k �= l), CREAT (P l

n, T l
n, Dl

n) ∈ Ol.. Where P k
m = P l

n = “R(Ck
i , Cl

j)” and
Dk

m = Dl
n = NULL

The reliability parameters can be regarded as a sub set of the ontology. So
they meet the requirement of all other elements in ontology.

2.2 Fusion Algorithm

Describe the supposition as constructing meta-knowledge sets, function as fusing
and generating new knowledge space.

FA(Fitness, F itness threshold, p, r,m, µ, ζ) (3)

A detailed explanation of such a knowledge fusion function can be found in
another paper[9] written by us. It is an important module in a whole knowledge

GouJ , YangJ , and ChenQ. .
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fusion system, so we should run it over in short. And here two new parameters are
added to FA for evaluation module in this paper. The difference between[9] and
this paper: the former introduced how to setup a knowledge fusion framework
and the latter is emphasis on how to optimize though evolution and evaluation
mechanism. What’s more, overall architecture here is in higher level compared
to the former.

Where Fitness denotes assessing function for fusion matching grade, which
can endow the given supposition sets with a matching grade. Fitness threshold
denotes the threshold value beyond which fusion process can’t persist[10]. p is a
supposed number which should be adjusted according to the result of unifying
among diversiform meta-knowledge sets. If dimension of some sets are too small,
NULL can be used to instead of it. r and m are intercross and aberrance percent.
µ and ζ are reliability parameters.

Step 1. Select p meta-knowledge sets randomly to setup initially supposition
colony marked as H. Calculate Fitness(S) for each S belonged to H.

Step 2. If max{Fitness(S)} < fitness threshold, do the following operation
circularly:

Select (1-r)p members of H into Hs

Intercross, aberrance, update and assess.
Where µ and ζ can be given value according to rules in section 4.
Step 3. Find the supposition whose fit grade is the max among those returned

from H. Append it to the solution knowledge space.
Select process in step 2. Lies on whether a relational attribute value is not

equal to NULL exists in ontology base that belongs to meta-knowledge set of the
supposition. Intercross requires uniform relation description in the ontology base.
Aberrance goes along with ontology description corresponded with supposition
meta-knowledge sets. That progress of the three steps can be summarized into
four sub-steps:

Select, Intercross
Then adjust ωi in µ.
Aberrance.

3 Evolution of Knowledge Object

There are two ways of implementing knowledge space. One is to integrate knowl-
edge objects into a physical warehouse with central management. The other is to
store only character information of meta-knowledge’s directory as a path pointer.
For the massive information in practice, we choose the latter.

Mapping knowledge objects into formalized meta-knowledge set and regard-
ing each element of the set as a knowledge point, we construct a LKS Ki consisted
of those points whose relationship grade is great than a threshold. Knowledge
filed in Ki is expressed by a finite question ontology that is knowledge states are
correlated or not.
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3.1 Evolution Types

Details of the evolution rules to LKSs can be summarized into three types based
on the type theory in software engineering. They are simple coalition, simple
migration and cooperating evolution.

Simple coalition means that certain LKSs can be integrated into a new one ac-
cording to some restriction and control rules. Ontology should be reconstructed
because the connotation of former knowledge states is changed. Simple migra-
tion means that a LKS can be redefined into another new one according to some
restriction and control rules. Ontology need not to be reconstructed but to ad-
justed its elements. Cooperating evolution means that certain LKSs according to
some restriction can cooperate and be reciprocity to create new one(s). Probably
some would turn into dead state during that process. Cooperating evolution in-
cludes two subtypes. The first one is that certain LKS should be “divided” into
several other new ones if the frequency of being used to resolve diverse problems
is too large, while most of those process need only a small part of the whole
knowledge set in that LKS. The other one is a migration from several LKSs to
another several ones.

3.2 Evolution Process

Define a state matrix to quantitate relationship among knowledge objects. Let
its dimension equal to the amount of them, while each element’s value lies on
whether those two objects belong to a same LKS.

According to this method we can define an initial state matrix A0 and a result
matrix R. Actually any evolution of knowledge system state is corresponding to
a control matrix Bi, and the whole evolution process can be expressed as B
where bij ∈ {0,1} and B = B0B1. . . . Initial value of B is given by experts’
experience and usually it is a thin matrix. They obey the rule:

A0B = R (4)

So in a learning procedure we can get BT ’s value with RT ’s linear equation
group through iterative solution.

For each rij ∈ R,

IF (j > i) AND (rij > threshold coalition)
{IF (rii > threshold LKS) OR (rjj > threshold LKS)
UNITE Objecti AND Objectj ;
ELSE
{LKS New.Create ; //Create a new LKS
LKS New.ADD(elementi) ;
LKS New.ADD(elementj) ;
UPDATE R ;
}
}

. GouJ , YangJ , and ChenQ. .
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If any diagonal element’s value is less than threshold annihilate, annihilation
takes place. Object i

⊆−→Objectj , Object i.Destory . Where j meets the require-
ment as followed:

rij = Maxm
k=i+1{rik} (5)

4 Evaluation Method

Rationality of knowledge objects’ structure must be feedback by applications.
So the fusion process should be evaluated by the degree of match between fusion
result and applications to adjust weight parameters in FA.

4.1 Data Set of Reliability Parameters

Let O0= {(P 0T 0D0)} denotes the data set of reliability parameters of the knowl-
edge fusion system. Where P 0 at least includes two elements, the physical reli-
ability µ and the logical reliability ζ.

µ descripts the proportion of a knowledge object in its father knowledge
entity. We can trust a knowledge object at prime tense, so a holistic knowledge
set has a µ whose value is 1.0. An exit knowledge node set (ens) is created which
contains the lowest level nodes in the fusion system. For those nodes Si not at
the lowest level, an immediate successor set (iss) is created which contains the
nodes immediately below Si and have ontology-dependent on it. And if we regard
the first knowledge entity as a bottom layer node then elements on higher layers
should have a less value of µ. During the knowledge fusion process we only use
some sub sets or elements of it, so the corresponding physical reliability must be
just a part of 1.0, which we can calculate as following expression:

µ(Si) = 1.0, (Si ∈ ens) (6)

µ(Si) = ωi ×
∑

i,NOT (Si ∈ ens) (7)

Where ωi is the weight of the node Si and its default value is 1.0. µ incarnates
the similar degree between two ontology elements while being fused.

ζ is a dualistic data which descripts the quantity that knowledge object has
been used and the frequency it has been right used. So the parameter can be
defined as ζ = (α,β). When we create a whole new knowledge entity, it means
we have used and right used it this time, so the initial value of ζ must be (100%,
1). According to those mentioned in last paragragh, in the fusion system any
knowledge node can inherit the value of ζ from its father node on the lower
neighbour layer when it is firstly created. Because the frequency it has been
used is changing during applications and such changes must be feed back to the
corresponding dualistic data, ζ may keep changing. The process of changing β’s
value is implemented by control module of the whole knowledge fusion system.
When a correct result from applications is coming, ζ’s value can be refreshed
according to followed:
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ζT+1 = (βT + 1)/(αT βT + 1), if(Result = TRUE) (8)

ζT+1 = (βT + 1)/αT βT , if(Result = FALSE) (9)

ζ incarnates the adjustment of µ and it descripts the reliability according to
what is actually happening.

4.2 Revising µ and ζ

ωi in µ has been adjusted automatically in the algorithm introduced above.
Then let us see how to revise the other one. If we describe knowledge as meta-
knowledge sets after fusion process and each element in those sets as knowledge
point, the sets consisted of whole knowledge states generated by FA can be
regarded as solution knowledge space which marked as K. Knowledge filed in K
is expressed by a finite question ontology that is knowledge states are correlated
or not.

Fig. 2. Flow chart of processing the parameters

Solution knowledge can be generated as follows:

Step 1. Create ontology corresponding with question (Op) and meta-
knowledge (restriction) sets (Sp). The idiographic method can be found in
section 2

Step 2. Search all knowledge states in K for Sa whose relationship grade to
question state is the max. For each knowledge state related to question ontology,
seek out its relationship grade. It is also the percent of related knowledge points
in knowledge state and those in question state.

Knowledge state Sk relates to question ontology Op must meet requirement
as follows: Exists (P p

j , T p
j , Dp

j ) ∈ Op, (P k
j , T k

j , Dk
j ) ∈ Ok and P p

j = P k
j and

Dp
j �=NULL, Dk

j �=NULL.

. GouJ , YangJ , and ChenQ. .
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5 A Referential Application

In this section, we shift our focus beyond the abstract architecture and point to
a case study. Table 1 shows the attributes of every node in a knowledge-based
grid environment.

Result of qualitative analysis on partly data is in Table 2, where we can see
the model in the paper can reduce size of the application questions especially
when the information is massive.

Quantitive analysis of the case focuses on efficiency and controllability. Emu-
late on control matrix B, we can see that the state pattern of fusion result goes
to stable when B’s density locates in a certain range. The trendline is shown
in fig 3.

Table 1. Physical characters of KB-Grid nodes

IP address OS Strict Knowledge type

192.168.0.2-192.168.0.8 Windows Not Information table
192.168.0.9-192.168.0.15 Linux Not Frame
192.168.0.16-192.168.0.22 Linux Yes Procedure present
192.168.0.23-192.168.0.29 Windows Yes Conceptual graph
192.168.0.30-192.168.0.36 Windows Not Vector

Table 2. Result of qualitative analysis on partly data

- Transform times Losing connotation Find solution Reused Uniform

Based on interchange Prod Yes No Can Yes
Method in the paper Sum No Yes Can Yes

Fig. 3. Trendline of knowledge state
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Fig. 4. State of interzone’s ports

What’s more, we can also find in that figure that change of expression ρR

/ρA is not prominent any longer when ρB ∈ [ 0.19, 0.24 ]. To get a clearer
view on effect of control matrix and feedback mechanism, let ρB equal to the
interzone’s ports and we can get a result as shown in fig 4.

According to those emulates result, the trend of knowledge state when ρB

equal to the interzone’s ports can be formalized as followed:

ρB(C1) ≈ ρB(C2) (10)

1
MaxρA

|ρB(C1) − ρB(C2)| → ∞ (11)

6 Summary and Future Work

We present a new knowledge fusion framework with evolution process and eval-
uation method. Compared with traditional knowledge fusion system, method in
the paper improves the efficiency and reduces computational complexity. In the
future, we will use some optimal algorithm to find an effective search method in
global knowledge space.
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Abstract. Due to the lot of different Genetic Algorithm variants, en-
codings, and attacked problems, very little general theory is available to
explain the internal functioning of Genetic Algorithms. Consequently it
is very difficult for researchers to find a common language to document
quality improvements of newly developed algorithms.

In this paper the authors present a new Allele Meta-Model enabling
a problem-independent description of the search process inside Genetic
Algorithms. Based upon this meta-model new measurement values are
introduced that can be used to measure genetic diversity, genetic flexi-
bility, or optimization potential of an algorithm’s population. On the one
hand these values help Genetic Algorithm researchers to understand algo-
rithms better and to illustrate newly developed techniques more clearly.
On the other hand they are also meaningful for any GA user e.g. to tune
parameters or to identify performance problems.

1 Introduction

Genetic Algorithms (GAs) developed in 1975 by J. H. Holland [11] are a heuristic
optimization technique based on the natural evolution process. Although they
represent a very strong simplification of the complex processes observed in na-
ture we commonly subsume with the term evolution, GAs are very successful in
different fields of industrial and scientific application. In spite of their success
there is still very little mathematical theory available that might comprehen-
sively explain the different processes and their interactions inside a GA. One of
the main reasons for this drawback is the tremendous lot of different GA variants,
encodings, operators, and attacked problems. So most theoretical considerations
like the Schema Theorem introduced by J. H. Holland [11] or the Building Block
Hypothesis presented by D. E. Goldberg [9] concentrate mainly on one specific
form of individual encoding (in most cases binary encoding) and can therefore
hardly be generalized. Other approaches aiming to develop a common theory
for Evolutionary Computation in general (cf. [14], [18]) are faced with severe
difficulties due to the huge variety in the field of GAs.

As a consequence of this lack of theoretical background most scientists work-
ing in the area of GAs have a very profound intuitive knowledge about GAs

J. Mira and J.R. Álvarez (Eds.): IWINAC 2005, LNCS 3562, pp. 202–211, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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and GA behavior but it is very difficult for them to show some kind of hard
facts documenting their results. Most GA researchers will agree on the fact that
effects like selection, selection pressure, genetic diversity, (unwanted) mutations,
or premature convergence strongly interact with each other. These interactions
play an important role concerning achievable solution quality. However, very
few papers can be found that suggest ways to measure and visualize these forces
affecting GA populations.

In this contribution the authors present some new measurement values that
might help to overcome this situation. First of all a new allele oriented meta-
model for GAs is presented making it possible to understand and to discuss
processes inside the algorithm in a problem-independent way. Based upon this
allele model new measurement values are presented measuring genetic diversity,
genetic variety, goal-orientedness, and optimization potential during a GA run.
So these values help any GA developer e.g. to precisely show improvements when
introducing new algorithm variants and to discuss and compare the behavior of
new algorithms with already existing ones. Furthermore, the values can also be
used by any GA user to get some more meaningful feedback from the algorithm
helping to tune parameters, to identify performance problems, or to develop a
deeper understanding for GAs in general.

2 An Allele Oriented Meta-model for GAs

GAs mainly use the three genetic operators selection, crossover, and mutation
to manipulate solution candidates in order to achieve better results. Only one
of these three operators, namely selection, is independent of the chosen problem
encoding, as selection depends only on the individuals’ fitness values. So when
trying to make any general propositions about GAs this high amount of problem
(i.e. encoding) dependency is a severe difficulty. Therefore, most of the existing
theoretical considerations like the Schema Theorem or the Building Block Hy-
pothesis only concentrate on binary encoding, as it was the first encoding variant
suggested by J. H. Holland and is still used in numerous applications.

However, in the last years various other forms of individual encoding (e.g.
permutation-based, real-valued, etc.) have been introduced. These codifications
have shown high potential in lots of applications like e.g. the Traveling Salesman
Problem, Scheduling Problems, or Genetic Programming. In those cases using
binary encoding was not at all intuitive and required the development of sophis-
ticated and rather inappropriate crossover and mutation operators. As different
solution encodings also led to the development of new crossover and mutation
operators, it is very difficult to generalize the theoretical statements of Holland
and Goldberg in order to be applicable for these new GA variants.

So before we can think of new measurement values describing the internal
functioning of GAs, it is necessary to develop a new problem-independent view.
Otherwise the newly proposed insights would also only be applicable for a specific
kind of GA applications. This conclusion was the cornerstone for the development
of the Allele Meta-Model of GAs. The basic question that needs to be answered



204 S. Wagner and M. Affenzeller

is, what the atomic entities, GAs work with, are and if and how these entities can
be stated in a problem-independent way. In fact, in the case of binary encoding
the Building Block Hypothesis already highlighted the importance of small parts
of genetic material (low-order schemata with short defining length and above
average fitness) that are assembled by the algorithm to generate better solutions.
When abstracting this consideration a GA in general can be seen as a process
that combines different parts of genetic code.

In biology the concrete realization of a gene is called an allele and represents
the logical entity on top of the molecular level. So it seems quite reasonable to
use the term allele also in the context of GAs describing the basic entity that
represents genetic information, forms chromosomes, and describes traits. In the
case of binary encoding an allele can e.g. be a bit at a specific position of the
individual’s bit string. As the concept of alleles is problem-independent and not
restricted to binary encoding, it can be defined for other GA encodings as well. In
the case of permutation encoding e.g. the sequence of two numbers of the permu-
tation or a number at a specific position of the permutation can be considered
as an allele depending on the optimization problem and the interpretation of
its encoding. Obviously the identification and interpretation of alleles, i.e. the
layer below the Allele Meta-Model, is highly problem and encoding dependent.
Though on top of the Allele Meta-Model GAs can be discussed in a completely
problem-independent way including crossover and mutation concepts.

Based upon the Allele Meta-Model the Standard Genetic Algorithm (SGA)
(as described in e.g. [7], [8], [16], [17], [21]) can be reformulated in the following
way: Each individual is represented by a randomly initialized set of alleles. Each
set is analyzed by an evaluation function returning a fitness value of the individ-
ual. In the selection step individuals, i.e. allele sets, with high fitness are selected
for reproduction. Then the crossover operator is used to merge two parental al-
lele sets to one new set in order to generate a new solution, i.e. child. Thereby
it might happen, that not all alleles contained in the new solution are also ele-
ments of at least one of the parental allele sets. This situation occurs when using
some more complex encoding requiring crossover operators with some kind of
repair strategy and is referred to as unwanted mutations. Finally the mutation
operator might be used to exchange some alleles of the child’s allele set by some
other ones.

3 Allele Frequency Analysis

As population genetics focus on the changing of allele frequencies in natural
populations the Allele Meta-Model of GAs builds the bridge between GAs and
population genetics. So it should be a very fruitful approach to consider various
aspects and terms of population genetics for GA analysis (cf. [2], [3]). Population
genetics define various forces influencing allele frequencies in natural popula-
tions: the Hardy-Weinberg Law, Genetic Drift, Selection, Mutation, etc. (a good
overview can be found in [10]). However, as the basic population model in pop-
ulation genetics assumes diploid individuals these insights have to be adapted
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accordingly in order to be valid for GAs which are haploid per design. All these
different forces lead to one of the following four different results concerning the
frequency of alleles (p denotes the probability that a specific allele is contained in
the genetic code of an individual, or in other words is element of an individual’s
allele set):

– p → 1: The allele is fixed in the entire population.
– p → 0: The allele is lost in the entire population.
– p → p̂: The allele frequency converges to an equilibrium state.
– p → p: The allele frequency remains unchanged.

So in this context the global goal of GAs can be reformulated in the following
way: Use selection, crossover and mutation to modify the allele frequencies of the
population in such a way that all alleles of a global optimal solution are fixed in
the entire population. All other alleles belonging to suboptimal solutions should
be lost.

As a consequence it should be very insightful to monitor the distribution of
alleles in a GA population during the execution of the algorithm in order to
observe the success of a GA concerning the success criterion stated above. In
fact this is the main idea of the Allele Frequency Analysis (AFA) and its new
measurement values. Consequently it is necessary to distinguish between two
different types of alleles: On the one hand there are alleles belonging to a global
optimal solution and on the other hand all other alleles being definitively not
optimal. As a matter of course such a distinction can only be made when using
benchmark problems with known optimal solutions. For better differentiation
the first kind of alleles are referred to as relevant alleles (cf. building blocks) in
the following.

Based on the Allele Meta-Model of GAs some measurement values can be
introduced that represent the basis of the AFA:

– Total Number of Different Alleles (A):
The total number of different alleles contained in the entire population is
a precise measurement for genetic diversity. The more different alleles are
available in the population the more diverse is the genetic code of the
individuals. In the case of combinatorial optimization problems it’s im-
portant to bear in mind that the total number of different alleles in the
whole solution space is usually not that large as the complexity of combi-
natorial optimization problems is caused by the millions of possible com-
binations of alleles. E.g. a 100 cities Traveling Salesman Problem has only
99 + 98 + 97 + . . . + 1 = 100·99

2 = 4950 different edges, i.e. alleles.

– Number of Fixed Alleles (FA):
A second measurement value of interest is the number of fixed alleles in the
entire population, i.e. the number of alleles contained in the allele set of
every individual. It indicates the genetic flexibility of the population as any
fixed allele cannot be altered by crossover anymore (apart from unwanted
mutations). Consequently especially the fixing of suboptimal alleles is very
harmful for GA performance because it benefits premature convergence.
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– Total Number of Relevant Alleles (RA):
If benchmark problems with known optimal solutions are used for analyzing
GAs, it is possible to identify alleles of global optimal solutions and to count
their total number in the entire population. This value provides information
about how goal-oriented the evolutionary search process is. Ideally the total
number of relevant alleles should be steadily increasing until all relevant
alleles are fixed in the entire population.

– Number of Fixed Relevant Alleles (FRA):
The number of fixed relevant alleles is a fraction of all fixed alleles and
estimates the success chances of the GA. Especially the deviation between
the number of fixed relevant and fixed alleles is very informative as it points
out how many suboptimal alleles are already fixed in the population which
indicates the severity of premature convergence.

– Number of Lost Relevant Alleles (LRA):
Contrary to the number of fixed relevant alleles the number of lost relevant
alleles shows how many relevant alleles are not included in the population’s
gene pool anymore. In an ideal (hyperplane sampling) GA this value should
always be 0 as such lost relevant alleles can only be regained by mutation
which is contradictory to the idea of hyperplane sampling. Again this mea-
surement value helps to appraise premature convergence.

– Distribution of Relevant Alleles (DRA):
Concerning relevant alleles there is finally the opportunity to monitor the
distribution of all relevant alleles in the entire population during the GA
execution. In fact this is not a single measurement value but a very good
technique to visualize the dynamics of a GA and in particular the interplay
between hyperplane sampling (crossover) and neighborhood search (muta-
tion).

– Selection Pressure (SP ):
Last but not least there is another measurement value not directly moti-
vated by the Allele Meta-Model. The concept of selection pressure was first
introduced by Charles Darwin as a result of birth surplus [6]: A population is
producing more offspring than the actual environmental resources can keep
alive. Consequently some of the not so fit children die before they reach the
age of sexual maturity. This fact causes a so-called selection pressure among
the offspring requiring a minimum fitness to survive in order to pass on their
own genetic information. In the context of Evolutionary Computation selec-
tion pressure has been defined for some algorithms that also produce a birth
surplus like Evolution Strategies (ES) [19], the Breeder GA [15], SEGA [1],
or SASEGASA [4]. E.g. selection pressure is defined as λ

µ for the (µ, λ)-ES
where µ denotes the population size and λ stands for the number of procre-
ated offspring. A large value of λ

µ indicates a high selection pressure (small
population size, lots of children) and vice versa. In the above mentioned
algorithms selection pressure turned out to have a great influence on the
algorithms’ performance.
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However, in the general case of GAs selection pressure cannot be defined so
easily as a GA is normally procreating exactly as many children as needed.
So how can selection pressure be measured, if there is no birth surplus? One
possible suggestion is to define selection pressure as the ratio of the selection
probability of the fittest individual to the average selection probability of all
individuals (see e.g. [5]). However, this definition has two weaknesses: First,
it is an a priori definition of selection pressure, which doesn’t take stochastic
effects into account that might have a great influence especially when using
rather small populations. Second, the average selection probability depends
on the chosen selection strategy and cannot be calculated that easily in
some cases (e.g. when using Tournament Selection concepts). So the authors
decided to calculate selection pressure in an a posteriori way independent of
the used selection operator.
Selection pressure can be abstracted somehow as a measurement value indi-
cating how hard it is for an individual to pass on its genetic characteristics
from one generation to the next. So it seems to be reasonable to define selec-
tion pressure in a classical GA as the ratio between the population size and
the number of individuals selected as parents of the next generation. If the
individuals of the next generation are procreated by a few parent individuals
only, selection pressure is very high and vice versa. So selection pressure can
be calculated according to the following formula:

SP = 1 − |PAR|
|POP | (1)

where |PAR| stands for the number of different selected parents and |POP |
represents the population size. So a minimum selection pressure of 0 indicates
that all individuals of the parental generation got the chance of mating and
a maximum selection pressure of 1 − 1

|POP | represents the situation that all
offspring are mutated clones of a single super-individual.

4 Allele Frequency Analysis in Practice

In this section an example run of the Standard Genetic Algorithm (SGA) is
performed with the HeuristicLab1 optimization environment [22] to outline the
potential of the AFA. To highlight the encoding independency of the AFA a test
problem not restricted to binary encoding was chosen. The authors decided to
use the Traveling Salesman Problem (TSP) (e.g. described in [13]) as the TSP
is a very well-known combinatorial optimization problem with exactly one op-
timal solution in a majority of cases. Furthermore, a lot of different encodings,
crossover operators and mutation concepts for GAs are available (cf. [12]). As test
problem instance the ch130 TSP benchmark problem taken from TSPLIB [20], a
comprehensive collection of TSP benchmark problems, is used. For this problem

1 More details can be found on the HeuristicLab homepage http://www.heuristiclab.com.
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Table 1. Parameter Settings

Generations 2’500 Selection Operator Tournament Selection
Population Size 250 Crossover Operator Order Crossover (OX)
Mutation Rate 5% Mutation Operator Simple Inversion Mutation (SIM)
Tourn. Group Size 3

Table 2. Solution Quality and AFA Results

Optimal Solution Fitness 6’110 A 150
Best Found Solution Fitness 7’099 RA 19’738
Average Solution Fitness 7’118.06 FA 113
Evaluated Solutions 625’000 FRA 69
Average SP 0.361 LRA 51

not only the quality, i.e. the tour length, of the optimal solution is known (6’110)
but also the optimal tour itself, which makes it well-suited for the AFA. Further-
more, path representation is used for solution encoding, whereby the alleles are
represented by the edge information contained within the permutation in that
case.

However, it has to be mentioned once again that the AFA is not restricted
to a specific form of TSP encoding or to the TSP in general. The AFA can be
performed for any kind of optimization problem, if the definition of alleles is
reasonable.

The parameter values used for the example run are listed in Table 1. More-
over, the achieved results concerning solution quality and the AFA values of the
last generation are presented in Table 2.

However, the development of solution quality and AFA values during the
GA run is far more interesting than the final results as it helps to gain some
insight about what’s going on inside the algorithm. In Figure 1 the fitness value
of the best found solution and the average solution fitness, as well as the A and
RA value (second y-axis) are shown. Additionally, Figure 2 shows the progress
of A as well as FA, FRA, and LRA (second y-axis). It can be seen that the
diversity of the population (A) is decreasing proportional with the decrease of
the fitness value.2 Contrariwise the number of relevant alleles (RA) is increasing
as the solution quality increases. These aspects are not really surprising as the
GA uses evolutionary forces to improve the genetic material of its population.
Consequently, disadvantageous alleles will be eliminated due to selection. The
population size is not modified during the run and so the total number of alleles
is staying constant leading to an increase of advantageous alleles reflected in the
increasing RA.

A more interesting aspect revealed by the charts is the drastic loss of genetic
diversity in the first few generations. The A value is dropping from almost 8.000

2 Note that in the context of the TSP a decreasing fitness value is equivalent to an
increasing solution quality as the total tour length is used as fitness value which
should be minimized.
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Fig. 1. Best Solution Fitness, Average Solution Fitness, A, and RA
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Fig. 2. A, FA, FRA, and LRA

at the beginning to approximately 4.500 within the first 20 generations. This
dramatic diversity reduction comes along with a significant increase of solution
quality. However, also a lot of relevant alleles are lost indicated by the LRA value
jumping to almost 60 during this period. Although mutation and also unwanted
mutations are able to regain some of the lost relevant alleles the algorithm doesn’t
fully recover from this initial diversity loss during the whole run, leading to
premature convergence in the end.

After this initial phase genetic diversity is further strongly decreased and on
the opposite the number of lost relevant alleles increases, indicating a rather
high selection pressure (as expected when using Tournament Selection with a
group size of 3). Then shortly before generation 200 is reached genetic diversity
is reduced that much that first alleles are fixed in the entire population (FA).
The FA value increases very quickly and from that moment on genetic flexibility
of the population is very low. Crossover is not able to combine alleles in order to
generate better solutions anymore and the algorithm needs mutation and also
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unwanted mutations to induce new alleles into the gene pool of its population.
Obviously, mutation is able to find some of the missing relevant alleles in the
last phase of the GA as the number of relevant alleles and consequently also the
solution quality further increases slowly. These newly found relevant alleles are
then propagated via crossover among the allele sets of all individuals leading
to an increasing FRA value. However, not all relevant alleles are regained by
mutation and so the algorithm prematurely converges at a best found solution
fitness value of 7’099 which is 16.19% worse than the optimal solution.

5 Conclusion

In this paper the authors present the Allele Meta-Model for GAs. By introduc-
ing alleles as the atomic entities GAs work with, it gets possible to consider
the whole process of a GA in a problem-independent way. Furthermore, inspired
by the area of population genetics the Allele Meta-Model builds the basis for
introducing some new measurement values subsumed with the term Allele Fre-
quency Analysis. These values describe the internal state inside an algorithm by
measuring genetic diversity, genetic flexibility, goal-orientedness, or optimization
potential. Furthermore, in a short experimental part the paper also illustrates
how the measurement values also help to predict premature convergence and to
identify its reasons.

Finally it can be stated, that the Allele Meta-Model and the Allele Frequency
Analysis are not only meaningful for any GA researcher helping to document
improvements of newly developed algorithms and providing a common language,
but also for GA users, as the calculated values provide essential feedback about
the algorithm and help to tune parameters, to identify performance problems,
and to gain deeper understanding for GAs in general.
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Abstract. The ”NP-Complete” class gathers very significant practical
problems such as Sat, Max-Sat, partitioning There is not polynomial al-
gorithm for the resolution of these problems. As a result, the interest in
heuristics and meta-heuristics is still growing. In this paper, we present
a very recent metaheuristic introduced to solve a 3-sat problem. This
metaheuristic can be classified as an evolutionary algorithm. It is based
on the process of bees’ reproduction. We adapted it for the resolution
of the Max-Sat problem. We tested it on a medical benchmark obtained
from a data-mining problem that we translated into a Max-Sat problem.

Keywords: Data-Mining, Satisfiability, Maximum-Satisfiability, Opti-
mization, Optimisation using bees, MBO algorithm.

1 Introduction

Most of the NP-Complete problems studied in Combinatorial Optimization are
simple to express (the salesman problem, SAT, partitionning...) and can be easily
solved in theory, just by enumerating all the possible solutions and choosing the
best. This is how the exact methods work. In practice, this approach is used,
and even recommended, for small sizes problems. However, using exact methods
quickly becomes impossible as the size of the problem increases. This is due to
the computing time which grows exponentially with the number of variables.
Indeed, to set the truth table of a Boolean formula of 64 variables (264 possible
combinations) would take several years on a current PC.

Because of the practical importance and applications of most NP-hard prob-
lems, it is often essential to find approximate solutions in a reasonable time. In
most of the practical cases, having an optimal solution is not of primary impor-
tance and a solution of rather good quality found in a reduced time can be more
interesting than an optimal solution found in a longer time. The approaches
based on heuristics, such as the metaheuristics, meet this requirement. They
find acceptable solutions, even optimal ones, in a relatively short time.

Optimization by Bees’ Colony is a new evolutionary metaheuristic inspired
by the social organization of bees and their process of reproduction. The char-
acteristic of this method is that it mixes the principle of general metaheuristics
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and dedicated heuristics in the same algorithm. We use the algorithm of opti-
mization by Bees’, in this paper, to solve a data mining problem expressed as
a Max-Sat One. The problem considered is a supervised learning one that we
translate into a Boolean formula in its Conjunctive Normal Form (CNF). The
obtained Max-Sat problem is solved using the metaheuristic. The best solutions
found can easily be back-translated into rules that can be applied to the data
sets in order to verify that they really satisfy a maximum number of instances
in the original learning problem.

Section 2 gives brief definitions on the Satisfiability, Maximum Satisfiability
and Data-Mining problems. The third one introduces some characteristics of
the real bees colonies. Sections 4 and 5 present the artificial modeling of the
reproduction for bees and the algorithm associated. Section 6 introduces the
medical benchmark used to test the algorithm. Section 7 gives some results
obtained on the benchmark and section 8 concludes this paper.

2 Sat, Max-Sat and Data Mining

The SAT problem is central in the class of NP-Complete problems. It is the first
problem to have been proved to be NP-Complete [1]. Several problems having
practical applications can be reduced to a SAT one in a polynomial time [2]. We
define in the following the problem of Satisfiability of a Boolean formula (SAT
problem). Let X= x1, x2 xn and C = C1, C2 Ck be respectively a set of n
variables and a set of k clauses. F is a Boolean formula in its conjunctive normal
form (called system SAT) where:

F = ∧Ci(1 ≤ i ≤ k) andeach Ci = ∨xj(1 ≤ j ≤ n); (1)

xj being a literal (a propositional variable or its negation). F is said to be
satisfiable if and only if there exists a truth assignment I such as I(F) is true, I
being a function which associates to each variable a truth value (Yes or No).

The non satisfiability of a SAT system leads us to ask the following question:
”How many clauses of F can be satisfied simultaneously?” This problem is called
the maximum satisfiability problem (Max-Sat). It is an optimization problem
that has been classified as a NP-Complete problem [3].

Data-mining [4], [5] is the process of exploration and analysis, by automatic
or semi-automatic means, a large quantities of data in order de discover mean-
ingful patterns and rules [6]. The main tasks of Data-Mining are classification,
estimation, prediction, affinity grouping, association rules, clustering, and visu-
alization. The knowledge discovery can be of two types: directed (classification,
estimation, prediction) or undirected (affinity grouping, association rules, clus-
tering, and visualization). In the first case, the ”directed knowledge discovery”,
tries to explain or classify a particular field of data, using the remainder fields
to classify new individuals. The second case relates to the discovery of forms or
similarities between groups of records, without using a specific target field, or a
collection of preset classes.
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The problem, we deal with in this paper, is a classic prediction problem that
is often expressed as follows: Knowing a certain number of characteristics on
a given individual (called explanatory variables) noted (X1, X2 ... X N), with
which certainty can one deduce the value of an unknown characteristic called
variable to explain and noted Y. As we want to treat this problem as a Max-
Sat one, we translate it into a CNF Boolean formula using a specific algorithm
developed in [7], [8].

3 Real Bees’ Colonies

The bees are social insects living in hives in very organized colonies. A colony
of bees is made up of three categories of adults: the queen, drones and workers.
The bees appear among the most studied social insects, undoubtedly because
they are among the most organized animals and as a result the most attractive
ones. Indeed, the bees live in community divided into several social layers. They
communicate between them by several means (dance of the bees, pheromone )
and cooperate in the realization of various tasks such as the construction and
the maintenance of the hive, the harvest of pollen, etc.

The process of bees’ reproduction is very singular. Each social layer has a
role to play in the birth of a new bees’. In what follows, we will look more closely
to the process of reproduction, as the algorithm of optimisation by Colony of
Bees (MBO) is based on that process. It was introduced in 2001 by Abbas and
Al. [9], [10], [11] and used by the authors to solve the 3-Sat problems.

In nature, a colony of bees is made up of one or more queens, drones (male
bees), workers and broods. The queens are the principal reproductive individuals
of the colony. Only they can lay fertilized eggs. The drones are in charge of
fertilizing the new queen and are, thus, the ”fathers” of the colony. The workers
have, as a main task, to take care of broods and can, for certain species, lay
eggs too. Broods are made up of fertilized eggs and unfertilized eggs. The first
ones will give birth to queens or workers; whereas, the second ones generate
drones.

Each queen carries out once in her life a mating-flight. During her flight, the
queen will mate the drones that followed her. A queen mats herself with seven to
twenty drones per flight. After each mating, the sperm of the drone is added to
the spermatheca of the queen (reserve of spermatozoids). The queen will use, all
her life, this reserve which constitutes the genetic potential of the colony. Each
time that a queen has to lay fertilized eggs, it withdraws a mixture of sperm of
its spermatheca to fertilize them.

4 Optimisation by Bees’ Colonies

Optimisation using colonies of bees is a new intelligent technique inspired from
the biological process of bees’ reproduction. It is an evolutionary method which
includes, nevertheless, strategies based on the neighbourhood approach [9].
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The reproduction of bees’ has been modeled to solve optimization problems.
It gave birth to the Marriage in Honey-Bees Optimization algorithm (MBO). In
this algorithm, artificial queen, workers, drones and broods are used. An artificial
queen has a genotype, set of genes which constitutes its heredity. The queen’s
genotype can be considered as a complete solution to the problem. Energy and
speed are associated to a queen and used during her mating-flight. In addition,
each queen will have a spermatheca that will collect the sperms of the droves
encountered. The queen lays eggs that will become new queens (new solutions).

The artificial workers are specific heuristics to the problem which role is to
improve the genotypes of broods (future queens), making it possible to obtain
better solutions. Thus, in the artificial model, taking care of eggs corresponds to
improving their genotype. In other words artificial workers are algorithms that
improve the current solution locally.

Artificial Drones have only half of a genotype, they are haploid. In the arti-
ficial model, drones have a complete genotype and a mask being used to mask
half of the genes (selected randomly). The unmasked half of the genotype con-
stitutes the sperm of the drone. For example, in the Max-Sat, half of a solution
is a solution where only half of the variables of the formula appear. At the time
of fecundation, the male genes (elements of its genotype) are crossed-over with
the genotype of the queen to form a new genotype (complete solution).

The mating-flight can be considered as a series of transitions among a set
of states. Each queen goes from a state to another according to her speed and
mats herself with the drones met at each state according to a probability rule. A
state is in fact a drone; as a result, both terms will have the same significance in
what follows. At the beginning of each mating-flight, each queen has an initial
energy. It decreases during the flight and the queen returns to her nest when its
energy reaches a critical point or when its spermatheca is full. The probability
that a queen R mats herself with a drone B is given by the following formula :

Prob(R,B) = Exp(−difference/Speed(t)) (2)

Where Prob (R, B) represents the probability of a successful mating between
drone B and queen R. Difference represents the absolute difference between the
”fitness” of the queen and that of the drone. Speed (t) is the speed of the queen
at the time t. A quick look at this equation shows that the probability of a
successful mating is higher either at the beginning of the flight because the
energy of the queen is the highest (and thus its speed also), or when the fitness
of the drone is close to that of the queen.

After each transition, the speed and the energy of the queen are decreased
by using the following functions: Speed (t +1) = a * Speed (t) where a ∈ ]0 1[

Energy (t+1) = Energy (t) - step.
Where step represents for a given queen the quantity of energy spent at each

stage. It is initialized as follows:

step =
0.5 ∗ Initial Energy

Size of the spermatheca
(3)
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The process of reproduction tends to improve the genotype of the queen
through the generations and thus improve the initial solution.

5 The MBO Algorithm for the Max-Sat Problem

The MBO algorithm starts by initializing a set of workers. It consists of choos-
ing a certain number of heuristics and their parameters. Then, the genotype of
each queen is initialized to a random value. A series of mating-flights is then
programmed where energy, speed and the initial position of each queen are ran-
domly generated. We can consider that the MBO algorithm is divided into two
main parts. The first one corresponds to the mating-flight of the queens, while
the second one consists in generating new eggs for the colony. During the mating-
flight, queens will collect sperms that will be added to her spermatheca. It will
consist of a set of partial solutions that will be used to produce new ones that will
guide the search in different areas of the search space (diversification). During
this process, each queen starts to move among the states according to her speed
and mats herself with the drones met according to the probability rule (1). To
avoid consanguineous mating (convergence), the drones must be independent of
the queens and, for this purpose, are generated randomly. When a drone mats
itself with a queen, its sperm is added to the spermatheca of the queen. At
the end of their flight, each queen joins its hive and start laying eggs (creation
of broods). It is the second part of the algorithm. During this operation, each
queen withdraws randomly sperm from her spermatheca in order to crossover it
with her genome (genes carried by the chromosomes), thus complementing the
withdrawn sperm (incomplete solutions). The result of this crossover will give a
fertilized egg. A mutation is then applied to the eggs (diversification). Then, the
workers (heuristics) are used to improve the quality of each egg (solution). The
final stage is the replacement where the queens of less quality are replaced by
eggs of better quality. The unused eggs are eliminated and another mating-flight
can start.

The steps of the MBO algorithm adapted to the Max-Sat problem are given
in fig. 1.

A genotype (solution) for the Max-Sat problem is an array of size n, where n is
the number of variables in the formula. Each entry is set to 0 if the corresponding
variable is false, 1 if the corresponding variable is true. The fitness of a genotype
used is the quotient between the number of satisfied clauses by the genotype
and the total number of clauses in the formula. As we have seen, a worker is
a heuristic that will improve the genotype of the queen and the broods. In our
implementation of the MBO, the user can chose among the following methods:
GSAT [12], GWSAT [13], GTSAT [14], HSAT [15] and local search method (LS).

The four first methods are dedicated ones for the Sat problem.
To simulate the displacement of the queen towards another drone in the next

step of the mating flight, one flips the bits of the current drone according to a
probability represented by the current speed of the queen.
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Procedure MBOMax − Sat()
InitialisNbQueen, NBW orkers, NbEggs/ ∗ numberofqueens, WorkersandEggs
InitialiseMsizeofthespermatheca
Initialiseworkerswiththesameheuristic
Initialiseeachqueenwitharandomlygeneratedgenotype
Calltheworkerstoimprovethefitnessofeachqueen
WhileStoppingcriterianotmetdo

ForEachQueen
InitialiseenergyandspeedofeachQueen
step = 0, 5 ∗ energy/M
GenerateaDroneGnrerunfaux − bourdonenutilisantposition
Whileenergy > 0Do

IftheDroneisselectedaccordingtotheprobabilityrulethen
IfthespermathecaoftheQueenisnotfullthen

AddthespermoftheDronetotheQueen′sspermatheca
EndIf

EndIf
energy = Energy − step/ ∗ DecreasethevalueoftheQueen′senergy
vitesse = 0, 9 ∗ vitesse/ ∗ DecreasethevalueoftheQueen′sSpeed
F lipthegenes(bits)oftheDroneusingSpeedasaprobability.

EndWhile
EndFor
ForEachegg

SelectaQueenwithagoodfitness
SelectrandomlyaspermfromthisQueen′sspermatheca
GenerateanEggbycrossingovertheQueen′sgenotypewiththeselectedsperm
Improvethegenotypeoftheeggusingtheworkers

EndFor
WhilethebestegghasabetterfitnessthantheworstQueenDo

ReplacetheworstQueenwiththebestEgg
DeletetheEggfromthelist

EndWhile
EndWhile

End.

Fig. 1. The MBO for the Max-Sat problem

6 Presentation of the Bench ark Used

The training set used as benchmark in this study is extracted from a medical
one, aiming at analyzing the most revealing symptoms of the presence or not
of a laparotomy of the principal bile duct (LVBP). A sample of 150 individuals
was selected. Each individual being characterized by a set of seven variables.
Six explanatory ones: 1) DDT indicates the existence or not of gastric disorders,
2) ICTERE indicates the existence or not of jaundice, 3) STONE indicates the
existence or not of stones in the vesicle, 4) CYST indicates the existence or not
of cystic bile duct, 5) VBP indicates the existence or not of a dilation of the bile
duct, 6) BILE indicates the state of cleanliness of the bile; and finally a variable

m
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to explain 7) LVBP which indicate the existence or not of laparotomy of the
principal bile duct. The translation of the benchmark, using [7], [8] gave a CNF
formula with 68 variables and 346 clauses.

7 Tests and Results

In the following, some of the tests obtained using the MBO algorithm on the
Max-Sat problem are presented. It consists of two tables presented below (Table 1
and Table 2). In the first table we use GSAT as the worker for improving found
solutions through different iterations. By using the same worker for the different
simulations, we wanted to test different values for the parameters of the method
to find the best ones. The parameters of the MBO method are the following:
NbR: Number of queens; Sp:Size of the spermatheca of each queen; NbF: number
of mating-flights for each queen, V: initial speed of each queen; En: initial energy
of each queen, a : decreasing speed factor; Q0: Mating probability; Work: type
of worker. The last three columns of the table give the results which consist
of cost: the cost of the function, the total number of satisfied clauses by the
solution found. Gen the generation where it was found and the ET the execution
time.

The best result obtained with the MBO was the solution satisfying 332 clauses
out of 346. It was obtained using only one queen, the size of the spermatheca is
10, the number of mating-flight is 2 or 3, the initial speed is 0.7, the initial energy
is 0.6, a is 0.9 and Q0 is 0.4. One notices that when we increase the number of
queens to 2 (MBO 11), the execution time increases a lot. With One queen, one
has to set the size of the spermatheca to 7 to reach the solution satisfying 332
clauses (MBO 14).

Table 1. Results of the application of MBO on the medical benchmark

MBO NbR Sp NbVol V En Alpha Q0 Ouv Cost Gen Time

MBO1 1 10 3 0.7 0.6 0.9 0.4 GSAT 332 2 2:55:94
MBO2 1 10 3 0.9 0.6 0.9 0.4 GSAT 332 1 2:05:29
MBO3 1 10 3 0.5 0.6 0.9 0.4 GSAT 327 2 2:51:99
MBO4 1 10 3 0.7 0.9 0.9 0.4 GSAT 332 1 2:10:98
MBO5 1 10 3 0.7 0.7 0.9 0.4 GSAT 332 2 2:49:34
MBO6 1 10 3 0.7 0.6 0.4 0.4 GSAT 330 1 2:51:98
MBO7 1 10 3 0.7 0.6 0.5 0.4 GSAT 330 1 2:50:29
MBO8 1 10 3 0.7 0.6 0.7 0.4 GSAT 331 1 1:06:45
MBO9 1 10 2 0.7 0.6 0.9 0.4 GSAT 331 1 1:20:99
MBO10 1 10 1 0.7 0.6 0.9 0.4 GSAT 330 1 1:21:95
MBO11 2 10 2 0.7 0.6 0.9 0.4 GSAT 332 1 4:03:93
MBO12 1 1 2 0.7 0.6 0.9 0.4 GSAT 330 2 0:33:03
MBO13 1 4 2 0.7 0.6 0.9 0.4 GSAT 331 1 0:55:09
MBO14 1 7 2 0.7 0.6 0.9 0.4 GSAT 332 2 2:01:47



Using Bees to Solve a Data-Mining Problem Expressed as a Max-Sat One 219

Table 2. Influence of the workers on the performance of the MBO

MBO NbR Sp NbVol V En Alpha Q0 Ouv Cost Gen Time(s)

MBO1 1 10 2 0.7 0.6 0.9 0.4 LS 331 2 1:05:93
MBO2 1 10 2 0.7 0.6 0.9 0.4 GSAT 332 2 2:55:94
MBO3 1 10 5 0.7 0.6 0.9 0.4 GWSAT 328 1 2:02:97
MBO4 1 10 5 0.7 0.6 0.9 0.4 HSAT 330 2 3:52:85

In the tests presented in table 2, we wanted to show the impact of the workers
on the quality of the solution found. As mentioned before several methods where
used as workers: a local search algorithm LS, GSAT, HSAT, GWSAT. Each
worker was used with its best parameters. One can notice that the best solution
found was the MBO using GSAT as a worker. It was the only one that could
reach the solution satisfying 332 clauses out of 346. Non of the other workers
could give this solutions.

8 Conclusion

Optimization by Bees Colony (MBO) is a metaheuristic that one can classify in
the family of evolutionary methods because it shares certain concepts with the
Genetic Algorithms (genes, population, crossover, replacement...). Nevertheless,
MBO presents a great number of particular characteristics in the way it operates.
Indeed, this new method combines the advantages of metaheuristics (general
methods, adaptable to a lot of problems) and advantages of dedicated heuristics
(designed to a particular problem, therefore potentially more effective). The
reason is that, on the one hand, the queens and the drones used by MBO can
be adapted to optimisation’s problems and, on the other hand, the workers
constitute the dedicated heuristics to the problem, thus allow the MBO algorithm
to benefit from specific information to each problem.

Because it is a very recent metaheuristic (in 2001), the MBO method was
applied, to our knowledge, only to the 3-Sat problem [10]. In this paper, we
adapted it to the Max-Sat problem and tested on a real case benchmark. It
comes from a supervised learning problem that was translated into a Max-Sat
problem. Different simulations and tests performed show the importance of the
different parameters of the method especially the workers. One main drawback
of this method is the time it takes for the resolution when the number of queens
increases. For this reason, a parallel approach using this metaheuristic seems to
be very interesting
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Abstract. One of the important problems in financial markets is mak-
ing the profitable stocks trading rules using historical stocks market data.
This paper implemented Particle Swarm Optimization (PSO) which is
a new robust stochastic evolutionary computation Algorithm based on
the movement and intelligence of swarms, and compared it to a Genetic
Algorithm (GA) for generating trading rules. The results showed that
PSO shares the ability of genetic algorithm to handle arbitrary nonlinear
functions, but with a much simpler implementation clearly demonstrates
good possibilities for use in Finance.

1 Introduction

Particle Swarm Optimization (PSO) is an evolutionary computation technique
developed by Kennedy and Eberhart in 1995 [1]. The basic algorithm is very easy
to understand and implement. It is similar in some ways to genetic algorithms,
but requires less computational bookkeeping and generally fewer coding lines [2].
Recently, this new stochastic evolutionary computation technique, based on the
movement and intelligence of swarms has been successfully applied to artificial
neural network [3], assignment problem [4], electromagnetics [5], size and shape
optimization [6], power system [7], chemical process [8] and so on.

There is a growing interest in their application in financial economics but
so far there has been little formal study, whereas other evolutionary algorithms
such as genetic algorithm (GA) [9], [10], genetic programming [11], [12] have
studied for over a decade. There have been a large number of literatures on the
effectiveness of various technical trading rules1 over the years.

The majority of them have found that such rules do not provide effective
output. For instance, Alexander [13], Fama and Blume [14] concluded that the

1 Technical trading rules uses only historical data, usually consisting of only past prices
but sometimes also includes volume, to determine future movements in financial asset
prices. This rules are devised to generate appropriate buying and selling signals over
short term periods (commonly some times per year) while fundamental trading rules
(buy-and-hold) doing it during relatively long term periods (commonly one trade
from a few years to over decades).
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filter rules are not profitable and needs dynamic adjustment at the expense of
transaction cost. Moreover Fama [15] dismissed technical analysis as a futile
undertaking as it deserved movement characterization. In a more recent study,
Brock et al. [16] considered the performance of various simple moving average
rules in the absence of transaction costs. Their finding also reported that the
rules can identify periods to be in the market (long the Dow Jones index) when
returns are high and volatility is low and vice versa.

This paper shows how PSO can be used to derive trading system with the
moving average rules that are not ad hoc but are in a sense optimal. Nowhere is
evidence that the result of this experiment makes consistent profits but suggest
an unbiased rules chosen by an evolutionary algorithm to technical traders or
trading systems. It demonstrates how PSO can be applied to find technical
trading rules in comparison to a GA. The results show that PSO is better suited
to GA from an efficiency of view.

Section 2 describes PSO algorithms. Section 3 shows how the rules are found
and evaluated, and addresses the robustness of the results and Section 4 Com-
putational results obtained with the KOSPI200 are reported. Section 5 contains
concluding remarks.

2 Overviews

2.1 GA Overview

GA is an algorithm used to find approximate solutions to difficult-to-solve prob-
lems, inspired by and named after biological processes of inheritance, mutation,
natural selection, and the genetic crossover that occurs when parents mate to
produce offspring. It is a particular class of evolutionary algorithms in which
a population of abstract representations of candidate solutions to an optimiza-
tion problem are stochastically selected, recombined, mutated, and then either
eliminated or retained, based on their relative fitness.

John Holland [17] was the pioneering founder of much of today’s work in ge-
netic algorithms, which has moved on from a purely theoretical subject (though
based on computer modeling), to provide methods which can be used to solve
some difficult problems today.

The structure of a general GA is shown in Fig. 1. The problem to be solved
is represented by a list of parameters which can be used to drive an evaluation
procedure.

Possible solutions to the problem (referred to as chromosomes) are also rep-
resented in this parameter list form. These chromosomes are evaluated, and a
value of goodness or fitness is returned. The next step of the algorithm is to
generate a second generation pool of parameter lists, which is done using the
genetic operator selection, crossover, and mutation. These processes result in a
second generation pool of chromosomes that is different from the initial gener-
ation, which is then evaluated and the fitness values for each list is obtained.
Generally the average degree of fitness will have increased by this procedure for
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Fig. 1. The general structure of GA

the second generation pool. The process continues by generating third, fourth,
fifth,... (and so on) generations, until one of the generations contains solutions
which are good enough.

2.2 PSO Overview

PSO has been shown to be effective in optimizing difficult multidimensional
discontinuous problems in a variety of fields [3]. Developed in 1995 by Kennedy
and Eberhart [1], the PSO can best be understood through an analogy similar
to the one that led to the development of the PSO. Robinson [5] explained the
PSO with a swarm of bees in a field. Their goal is to find the location in the field
with the highest density of flowers. Without any knowledge of a priori, the bees
are attracted both to the best location (group best) of highest concentration
found by the entire swarm, and the best location (personal). Eventually, after
being attracted to areas of high flower concentration, all the bees swarm around
the best location (group best) Fig 2.

The following equations are utilized, in computing the positions and
velocities:

vn = w ∗ vn + c1 ∗ rand() ∗ (pbest,n − xn) + c2 ∗ rand() ∗ (gbest,n − xn) (1)

xn = xn + vn (2)

where, vn is the velocity of the particle in the nth dimension and xn is the par-
ticle’s coordinate in the nth dimension, pbest,n is the best location of individual,
gbest,n is the best location among the individual (group best). W is the weight
factor, c1, c2 are the positive constants having values, rand() is the random
numbers selected between {0,1}.
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Fig. 2. a) Bees are attracted both to the best location (group best) by the entire
swarm and the best location (personal). (b) Eventually, all the bees swarm around the
best location (group best)

3 Specification of Trading Rules

3.1 Decision of the Investment Position

Financial market traders use trading rules which can be based on either technical
(short term, normally several times trading per year) or fundamental (relatively
long term, normally one trading during a few years) analysis to assist them
in determining their investments. The trading rules considered in this study is
based on a simple market timing strategy, consisting of investing total funds in
either the stock market or a risk free security. If stock market prices are expected
to increase on the basis of a buy signal from a technical trading rule, then the
risk free security is sold and stocks are bought until a sell signal returns.

A technical indicator which includes in moving averages, channels, filters,
momentum, is a mathematical formula that transforms historical data on price
and /or volume or each other to form trading rules. This paper considered in
moving average rules to enhance the performance of PSO.

3.2 Moving Average Rules

Moving averages are used to identify trends in prices. A moving average (MA)
is simply an average of current and past prices over a specified period of time
(starting from the current time). We define an MA of length θ as follows:

MAt(θ) =
1
θ

θ−1∑
i=0

Pt−i (3)

F (Θ)t =
{

0 if MAt(θ1) − MAt(θ2) > 0
1 else. (4)

where Θ = θ1, θ2, ∀θ1, θ2 ∈ {1, 2, 3, ...}, θ1 < θ2
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The periodicity of the two MAs have a range defined by 1< θ1 <L and
2< θ2 <L where L represents the maximum length of the moving average (For
this study L = 250 days which is a common one year except closed dates).

IfF (Θ)1= 1 (a shorter term MA crosses a longer term MA), the trading
rule returns ‘buy’ signal at that price and hold until F (Θ)1= 0 (a shorter term
MA down-crosses a longer term MA). This simple rule can find decision rules
that divide days into two distinct categories, either ‘in’ the market (earning
the market rate of return) or ‘out’ of the market (earning the risk-free rate of
return). A trading rule is a function that returns either a ‘buy’ or a ‘sell’ signal
for any given price history. The trading strategy specifies the position to be taken
the following day, given the current position and the trading rule signal. If the
current state is ‘in’ (i.e., holding the market) and the trading rule signals ‘sell’,
switch to ‘out’ (move out of the market); if the current state is ‘out’ and the
trading rule signals ‘buy’, switch back to ‘in’. In the other two cases, the current
state is preserved.

4 Methodology

4.1 Objective Function

Trading rules as defined by the indicator functions given in Equations (4), return
either a buy or sell signal. These signals can be used to divide the total number
of trading days (N), into days either ‘in’ the market (earning the market rate of
return rmt ) or ‘out’ of the market(earning the risk-free rate of return rft ). Thus
the trading rule returns over the entire period of 0 to N can be calculated as

rt =
N∑

i=1

F (Θ)trmt +
N∑

i=1

(1 − F (Θ)t)rft − T (tc) (5)

where rmt = ln( Pt

Pt−1
)

which includes the summation of the daily market returns for days ‘in’ the market
and the daily returns on the risk free security for days ‘out’ of the market. An
adjustment for transaction cost is given by the last term on the right hand side
of Equation (5) which consists of the product of the cost per transaction (tc)
and the number of transaction (T). Transaction costs of 0.2 percent per trade
are considered for the in-sample optimization of the trading rules.

4.2 Implementation of PSO

Discrete Binary Version
The revision of the particle swarm algorithm from a continuous to a discrete
operation may be more fundamental than the simple coding changes would im-
ply. The floating-point algorithm operated through a stochastic change in the
rate of change of position. The original xn = xn + vn(Equation 2) seems very
different from

IF (rand() < S(vn)), thenxn = 1; elsexn = 0 (6)
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where the function is a sigmoid limiting transformation and rand() is a quasi-
random number selected from a uniform distribution in {0, 1} [18].

Parameter Settings
The PSO algorithm has four parameters settings {W, c1, c2, Vmax}, defined
as: Vmax = Maximum velocities on each dimension, W = Weight factor, c1 =
Constant 1, c2 = Constant 2.

Without any boundaries or limits on the velocity, particles could essentially
search of the physically meaningful solution space. To solve this problem, Eber-
hart [14] considered a maximum allowed velocity called Vmax. Vmax is as a
constraint to control the global exploration ability of a particle swarm. If Vmax

is too large, particles might fly past good solutions. On the other hand, if Vmax is
too small, particles may not fly beyond locally good solutions. Vmaxwas best set
around 10-20% of the dynamic range of the variable on each dimension and we
set Vmax = 6 which means that the probabilities is limited to S((v)n), between
0.9975 and 0.0025.

The concept of a weight factor was developed to better control exploration
and exploitation. Eberhart [14] found out that suitable selection of the weight
factor provides a balance between global and local exploration and exploitation
and encourage form 0 to 1.

The acceleration constants c1 and c2 represent the weighting of the stochastic
acceleration terms that pull each particle toward pbest and gbest positions. Thus,
adjustment of these constants changes the amount of ‘tension’ in the system. Low
values allow particles to roam far from target regions before being tugged back,
while high values result in abrupt movement toward, or past, target regions.
Early experience with particle swarm optimization (trial and error, mostly) led
us to set the acceleration constants c1 and c2 each equal to 2.0 for almost all
applications [19].

4.3 Implementation of GA

Parameter Settings
The GA has four parameters settings {b, p, c, m}, defined as: b = Number of
elements in each vector, p = Number of vectors or candidates in the population,
c = Probability associated with the occurrence of crossover, m = Probability
associated with the occurrence of mutation.

In order to use a GA to search for the optimal parameter values for the rules
considered above, potential solutions to this optimization problem are repre-
sented using vectors of binary. In order to satisfy the limiting values given in
equations (3), (4), the binary representations for θ1and θ2 are each given by
a vector consisting of eight elements. Therefore, the binary representation can
be defined by a row vector consisting of twenty three elements. Tests were im-
plemented a generational GA Model with a ranking-based procedure developed
by [20], one point crossover operator equal to 0.6, a mutation operator equal
to 0.05 [12].
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5 Computational Results

5.1 Data and Parameters

For the study, we used daily data for the Korea Composite Stock Price Index
(KOSPI) 200 from 2 September 1994 to 31 August 2004. Call rate in Bank of
KOREA was chosen to risk-free rates during those terms. Transaction Costs (tc)
of 0.2 percent per trade were considered for the optimization of the trading rules.
Table 1 displays the data and parameter values that are used by the PSO and
GA for the trading rules.

Table 1. Data and parameters

a) PSO parameters

Pt rf tc Vmax W C1 C2

KOSPI200 Call rate 0.002 6 0 2 2

b) GA parameters

Pt rf tc b p c m

KOSPI200 Call rate 0.002 23 10-300 0.6 0.05

5.2 Numerical Results

Both algorithms for the computational tests were implemented in C program-
ming language on an Intel 2.4GHz Pentium 4, 512MB PC. To measure the effec-
tiveness and efficiency of PSO, results were compared with general GA. For each
algorithm, the results were averages of ten test trials. Figure 3 shows the chart
of returns by changing the population size and iteration number. The fitness of
PSO is better as compared with GA. For example, the average of 10 returns via
PSO with 50 pop sizes and 50 iterations is 144.0363%, but the same condition
of GA is only 122.7074%.

Both algorithms for the computational tests were implemented in C pro-
gramming language on an Intel 2.4GHz Pentium 4, 512MB PC. To measure the
effectiveness and efficiency of PSO, results were compared with general GA. For

Fig. 3. Average returns of 10 trials by changing the population size and iteration from
10 to 200
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Fig. 4. (a) Returns comparison between PSO and GA by changing the iteration from
10 to 500 with fixed population size at 100. (b) standard deviation comparison between
PSO and GA by changing the iteration from 10 to 500 with fixed population size at
100

each algorithm, the results were averages of ten test trials. Figure 3 shows the
chart of returns by changing the population size and iteration number. The fit-
ness of PSO is better as compared with GA. For example, the average of 10
returns via PSO with 50 pop sizes and 50 iterations is 144.0363%, but the same
condition of GA is only 122.7074%.

Figure 4 shows the average returns and standard deviations when the pop
size is fixed to 100 and varying the Iterations from 10 to 500. The standard
deviations of PSO with 300, 400, and 500 Iterations are equal to zero (we can
implicitly conclude that PSO must be reach the global maximum value). On
the other hand, the standard deviations of GA are remained as 0.062, 0.015
and 0.019.

6 Conclusion

This paper is the first study that demonstrates how PSO can be applied to
find technical trading rules and shows the effectiveness and efficiency compare
with GA. PSO can reach the global optimal value with less iteration and keep
equilibrium versus GA.

In this paper, PSO also shows the possibility that it can solve the complicated
problems without using the crossover, mutation, and other manipulations as GA
but using only basic equations. PSO will be used to explore large numbers of
different possibilities and can be easily extended to other areas that need many
fundamental variables.

We consider MA rules to enhance the performance of revised PSO (discrete
binary version) and used the KOSPI 200 daily data, Call rate in BANK of
KOREA to demonstrate the superiority and standard PSO parameters to avoid
a potential bias.

We have focused on market timing (technical analysis) rather than stock
selection in our tests, now is a good time to think some about how PSO might
be used to facilitate economics from a fundamentalist perspective because PSO
is able to explore large numbers of different possibilities.
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The particle swarm optimizer shares the ability of the genetic algorithm
to handle arbitrary nonlinear cost functions, but with a much simpler imple-
mentation it clearly demonstrates good possibilities for widespread use in
Finance.
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Abstract. In this article, a procedure to estimate a nonlinear models
set (Θp) in a robust identification context, is presented. The estimated
models are Pareto optimal when several identification error norms are
considered simultaneously. A new multiobjective evolutionary algorithm
ε↗−MOEA has been designed to converge towards Θ�

P , a reduced but
well distributed representation of ΘP since the algorithm achieves good
convergence and distribution of the Pareto front J(Θ). Finally, an ex-
perimental application of the ε↗−MOEA algorithm to the nonlinear
robust identification of a scale furnace is presented. The model has three
unknown parameters and �∞ and �1 norms are been taken into account.

1 Introduction

When modelling dynamic systems by first principles, the problem of paramet-
ric uncertainty always appears. Model parameters are never exactly known and
system identification can be used in order to identify their values from measured
input-output data. Uncertainty can be caused mainly by measurement noise and
model error (e.g. unmodelled dynamics) and it always appears as an error be-
tween model and process outputs (identification error for a specific experiment).

Well established identification techniques exist for linear models [6], [10], but
not for nonlinear ones. Most of these techniques rely on cost function optimiza-
tion where an error norm is considered. In particular, if the cost function is
convex, local optimizers offer the solution, but in the nonconvex case, global
optimization becomes necessary.

In general, nonlinear models produce nonconvex optimization problems, and
in this case, Evolutionary Algorithms [3], [5] offer a good solution. Furthermore,
considering several norms of the identification error simultaneously (e.g. 	∞, 	1,
	2, Fair, Huber, Turkey), the quality of the estimated models can be improved
[8]. Thus, identification of nonlinear processes is stated as a multiobjective op-
timization problem. To solve this problem, a Multiobjective Evolutionary Algo-
rithm (ε↗−MOEA), based on ε-dominance concept [1], [7], has been developed.
The algorithm converges to a well distributed sample of the Pareto Front.

The paper is organized as follows. In section 2, robust identification problem
is posed when different error norms are considered simultaneously. Section 3 des-

J. Mira and J.R. Álvarez (Eds.): IWINAC 2005, LNCS 3562, pp. 231–241, 2005.
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cribes the ε↗−MOEA algorithms to find the Pareto optimal set. Finally, section
4 presents experimental results when ε↗−MOEA is applied to the identifica-
tion of a thermal process represented by a nonlinear model with three unknown
parameters.

2 Robust Identification Approach

In this work the following structure is assumed for the nonlinear model:

ẋ(t) = f(x(t),u(t), θ), ŷ(t) = g(x(t),u(t), θ) (1)

where

– f(.), g(.) are the nonlinear functions of the model,
– θ ∈ D ⊂ Rq is the vector of unknown model parameters,
– x(t) ∈ Rn is the vector of model states,
– u(t) ∈ Rm is the vector of model inputs,
– ŷ(t) ∈ Rl is the vector of model outputs.

Let E(θ) = Y − Ŷ(θ), where

– E(θ) is the identification error,
– Y are the process output measurements , [y(0),y(T )...y(NT )], when the

inputs U = [u(0),u(T )...u(NT )] are applied to the process,
– Ŷ: are the simulated1 outputs [ŷ(0), ŷ(T )...ŷ(NT )], when the same inputs

U are applied to the model.

Denote ‖E(θ)‖pi
as the pi-norm of the identification error, with i ∈ A :=

[1, 2 . . . s]. When several norms of the identification error E(θ) are considered si-
multaneously, model identification can be posed as a multiobjective optimization
problem

min
θ∈D

J(θ) (2)

where

J(θ) = {J1(θ), J2(θ), . . . , Js(θ)} = {‖E(θ)‖p1, ‖E(θ)‖p2, . . . , ‖E(θ)‖ps} .

Consequently, there is not a unique optimal model and a Pareto optimal set ΘP

(solutions where no-one dominates others) must be found. Pareto dominance is
defined as follows.

A model θ1, with cost function value J(θ1) dominates another model θ2 with
cost function value J(θ2), denoted by J(θ1) ≺ J(θ2), iff

∀i ∈ A, Ji(θ1) ≤ Ji(θ2) ∧ ∃k ∈ A : Jk(θ1) < Jk(θ2) .

1 Model outputs are calculated integrating equations (1). T is the sample time and N
is the number of measurements.
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Therefore the Pareto optimal set ΘP , is given by

ΘP = {θ ∈ D | � θ̃ ∈ D : J(θ̃) ≺ J(θ)} . (3)

ΘP is unique and normally includes infinite models. Hence a set Θ∗
P , with a

finite number of elements from ΘP , will be obtained2.

3 ε↗−MOEA

The variable ε MOEA (ε↗−MOEA) is a multiobjective evolutionary algorithm
based on ε-dominance concept.

Consider the cost function space splitted up in a fixed number of boxes (for
each dimension, n boxi cells of εi wide)3. That grid preserves diversity of J(Θ∗

P )
since one box can be occupied by just one solution. This fact avoids the algorithm
converging to just one point or area inside the cost function space (Fig. 1).

The concept of ε-dominance is defined as follows. For a model θ, boxi(θ) is
defined by4

boxi(θ) = ceil

(
Ji(θ) − Jmin

i

εi

)
.

Let box(J(θ)) = {box1(θ), . . . , boxs(θ)}. A model θ1 with cost function value
J(θ1) ε-dominates the model θ2 with cost function value J(θ2), denoted by
J(θ1) ≺ε J(θ2), iff

box(θ1) ≺ box(θ2) ∨ (box(θ1) = box(θ2) ∧ J(θ1) ≺ J(θ2)) .

Hence, a set Θ∗
P is ε-Pareto iff

Θ∗
P ⊆ ΘP ∧ (box(θ1) �= box(J(θ2)), ∀θ1, θ2 ∈ Θ∗

P , θ1 �= θ2 . (4)

ε↗−MOEA algorithm obtains the ε-Pareto front J(Θ∗
P ), a well-distributed

sample of the Pareto front J(ΘP ). The algorithm, which adjusts the width ε
dynamically, is composed of three populations (see Fig. 2).

1. Main population P (t) explores the searching space D during the algorithm
iterations (t). Population size is NindP .

2. Archive A(t) stores the solution (Θ∗
P ). Its size NindA can be variable and

it will never be higher than Nind max A which depends on the number of
the boxes (n box).

3. Auxiliary population G(t). Its size is NindG, which must be an even number.

The pseudocode of the ε↗−MOEA algorithm is given by

2 Notice that Θ∗
P is not unique.

3 εi = (Jmax
i − Jmin

i )/n boxi.
4 The function ceil(x) returns the smallest integer greater or equal than x.
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Fig. 2. ε↗−MOEA algorithm structure

1. t := 0
2. A(t) := ∅
3. P (t) := ini random(D)
4. eval(P (t))
5. A(t) := storeini(P (t), A(t))
6. while t < n iterations do
7. G(t) := create(P (t), A(t))
8. eval(G(t))
9. A(t + 1) := store(G(t), A(t))

10. P (t + 1) := update(G(t), P (t))
11. t := t + 1
12. end while
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Main steps of the algorithm are detailed:

Step 3. P (0) is initialized with NindP individuals (models) randomly selected
from the searching space D.

Step 4 and 8. Function eval calculates cost function value (2) for each indi-
vidual in P (t) (step 4) and G(t) (step 8).

Step 5. Function storeini checks individuals of P (t) that might be included in
the archive A(t) as follows:
1. P(t) individuals non-dominated are detected, θND.
2. Cost function space limits are calculated from J(θND).
3. Individuals of θND are analyzed, one by one, and those not ε-dominated

by individuals of A(t), will be included in A(t).
Step 7. Each iteration, function create creates G(t) as follows:

1. Two individuals are randomly selected, one from P (t), θ1, and another
from A(t), θ2.

2. θ1 and θ2 are crossed over by extended lineal recombination technique
creating two new individuals θ

′
1 and θ

′
2.

3. θ
′
1 and θ

′
2 are included in G(t).

This procedure is repeated NindG/2 times until G(t) will be filled up.
Step 9. Function store checks, one by one, which individuals of G(t) must

be included in A(t) based on their location in the cost function space (see
Fig. 3). Thus ∀θG ∈ G(t)

J1
max

J1
min

J2
min

J2
max

Z1

Z2

Z3

Z3

Z4

Fig. 3. Cost function space
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1. If θG lies on the area Z1 and is not ε-dominated by any individual of A(t),
it will be included in A(t)5. Individuals of A(t) which are ε-dominated
by θG will be eliminated.

2. If θG lies on the area Z2 then it is not included in the archive, since it
is dominated by all individuals of A(t).

3. If θG lies on the area Z3, new cost function limits and εi widths are
recalculated. One by one the individuals of A(t) are again analyzed using
the same procedure as storeini function. Finally, θG is included in A(t).

4. If θG lies on the area Z4, all individuals of A(t) are deleted since all
of them are ε-dominated by θG. θG is included and cost function space
limits are J(θG).

Step 10. Function update updates P (t) with individuals from G(t). Every
individual θG from G(t) is randomly compared with an individual θP from
P (t). If J(θG) ≺ J(θ) then θG replaces θ, on the other hand, θ is maintained.

Finally, individuals from A(t) compound the solution Θ∗
P to the multiobjec-

tive minimization problem.

4 Robust Identification Example

Consider a scale furnace with a resistance placed inside. A fan continuously in-
troduces air from outside (air circulation) while energy is supplied by an actuator
controlled by voltage. Using a data acquisition system, resistance temperature
and air temperature are measured when voltage is applied to the process.

Fig. 4 shows the input signal applied and the output signal measured for
an experiment of length N = 6000. These signals will be used for the robust
identification problem.

The dynamics of the resistance temperature can be modelled by

ẋ1(t) =
1

1000
(
k1u(t)2 − k2 ((x1(t) − Ta(t))

)
+ Offset ,

ẋ2(t) = (1/k3)(x1(t) − x2(t)) , (5)
ŷ(t) = x2(t) ,

where

– ẋ1(t), ẋ2(t) are the model states,
– u(t) is the input voltage with rank 0 - 100 (%),
– ŷ(t) is the resistance temperature (oC) (model output),
– Ta(t) is the temperature inside furnace (oC),
– θ = [k1, k2, k3] are the model parameters to be identified,

5 When the individual is not ε-dominated and its box is occupied, that individual lying
farthest from the box centre will be eliminated.
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Fig. 4. Output process y(t), input process u(t) and disturbance Ta(t). T = 1sec. (sam-
ple time), N = 6000 (experiment length)

– Offset is the correction to ensure zero steady-state error at a particular
operating point 6.

To determine Θ∗
P , two norms p1 = 	∞ and p2 = 	1 have been considered, to

limit maximum and average identification error respectively. Therefore two cost
functions have to be minimized to solve the problem stated at (2)

J1(θ) = ‖E(θ)‖∞ , (6)

J2(θ) =
‖E(θ)‖�1

N
. (7)

The parameters of the ε↗−MOEA algorithm are set to:

– The searching space D is k1 ∈ [0.05 . . . 0.12], k2 ∈ [3.0 . . . 8.0] and k3 ∈
[1.0 . . . 25.0].

– NindP = 8000, NindG = 8, and n iterations = 3000.
– Cost funcion space parameter n box = [10, 10] (number of divisions for each

dimension).

At the end of the optimization process, the solution Θ∗
P is A(3000), which

contains six optimal models. Fig. 5 shows Θ∗
P with its projections on the planes

(k1, k3), (k2, k3) and (k2, k1) respectively.

6 Before applying input (see Fig. 4) the process is in steady-state. Assuming that
ẋ1(0) = ẋ2(0) = 0 and Offset = − 1

1000
(k1u(0)2 − k2(x1(0)−Ta(0)), is not necessary

to identify x1(0) and x2(0) since x1(0) = x2(0) = y(0).
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planes respectively

Fig. 6 shows associated Pareto front J(Θ∗
P ). Notice that the algorithm has

achieved an appropriate distribution of the Pareto front7 due to the gridding of
the cost function space. The ε↗−MOEA algorithm succeeds in characterizing
the front despite its short length and the differences among models.

The Pareto optimal set Θ∗
P is a sample of non-dominated solutions well

distributed over the Pareto front J(ΘP ). Since the final objective is to obtain a
unique model (θ∗), a way to select it has to be established8. In this work, the
proposal is based on the minimum distance to an ideal value cost function space.

The ideal value is obtained from the extremes of the sampled Pareto front
J(Θ∗

P ):

θ�1 = arg min
θ∈D

J1(θ) = [0.078, 4.92, 4.77]; J1(θ�1) = 0.42, J2(θ�1) = 2.9 ,

θ∞ = arg min
θ∈D

J2(θ) = [0.082, 5.17, 9.44]; J1(θ∞) = 0.480, J2(θ∞) = 1.72 .

Hence,
Jideal = (Jmin

1 , Jmin
2 ) = (0.42, 1.72) .

7 If a better characterization of Pareto front is required, n box parameter should be
increased.

8 In multiobjective literature this is not a trivial issue and there is several methodolo-
gies regarding it.
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The proposed solution θ∗ is the nearest model (in the cost function space) to
the ideal model (see Fig. 6):

θ∗ = [0.08, 5, 7.7]; J1(θ∗) = 0.43, J2(θ∗) = 2 .

The estimated nonlinear model θ∗ can be validated by comparing its simu-
lated output against measured output data (see Fig. 7).

5 Conclusions

A multiobjective evolutionary algorithm ε↗−MOEA, based on ε-dominance con-
cept, has been developed for robust identification of nonlinear processes. Conse-
quently, robust identification is posed as a multiobjective optimization problem
and ε↗−MOEA estimates the nonlinear model set Θ∗

P by assuming, simultane-
ously, the existence of several bounds in identification error. J(Θ∗

P ) results in a
well distributed sample of the optimal Pareto front J(ΘP ).

The algorithm presents the following features:

– Assuming parametric uncertainty, all kind of processes can be identified if
their outputs can be calculated by model simulation. Differentiability respect
to the unknown parameters is not necessary.

– The algorithm dynamically adjusts the Pareto front precision without in-
creasing the archive size Nind max A.

– The algorithm adapts the extremes of the Pareto front with independence
of the parameter n box. Consequently, good distribution and convergence
to the Pareto front is achieved.
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Abstract. Multiobjective optimization strategy so-called Physical Pro-
gramming allows controller designers a flexible way to express design pref-
erences with a ’physical’ sense. For each objective (settling time, over-
shoot, disturbance rejection, etc.) preferences are established through
categories as desirable, tolerable, unacceptable, etc. assigned to numerical
ranges. The problem is translated into a unique objective optimization
but normally as a multimodal problem. This work shows how to convert
a robust control design problem into a multiobjective optimization prob-
lem and to solve it by Physical Programming and Genetic Algorithms.
An application to the American Control Conference (ACC) Robust Con-
trol Benchmark is presented and compared with other known solutions.

1 Introduction

Usually, controller design is done to fulfill a set of conflicting specifications. For
instance, a robust controller for model variations is not compatible with high
performance, the same appends if it is necessary a bounded control effort, etc.
Therefore, the design of a controller can be understood as the search of the best
tradeoff among all specifications, then a multiobjective optimization (MO) is a
reasonable alternative.

The solution to a MO problem is normally not unique, the best solution for
all objectives does not exist. There is a set of good solutions and it is said they
are non-dominated solutions (none other is better for all objectives). Then it is
defined the concept of Pareto Set (set of non-dominated solutions) and Pareto
Front objectives values for Pareto Set solutions. Several techniques have been
developed to obtain Pareto Set [10], [3]. The next step consists of the selection
of a solution from Pareto Set, this is a subjective and non-trivial procedure that
depends on designer preferences. Decision Maker (DM) algorithms are focused
on helping designers in this task.

A traditional way to solve a MO problem (including DM) is to translate
it into a one objective problem by means of a weighted sum of all objectives.
Weights are usually ajusted by a trial and error procedure and it is difficult for
the designers to translate their knowledge and preferences.

J. Mira and J.R. Álvarez (Eds.): IWINAC 2005, LNCS 3562, pp. 242–251, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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To overcome this disadvantage Physical Programming methodology [7] sets
specifications design in an understandable intuitive language for designers. Pref-
erences for each objective (settling time, maximum control effort, etc.) are spec-
ified, in a flexible and natural way, by means of so-called Class Functions and
range of preferences. All settings of MO problem and DM become more trans-
parent for designer who only needs algorithms to compute objectives and to
define ranges of preference for each objective. Notice that this new optimization
problem could be multimodal then an adequate optimization technique has to
be used, Genetic Algorithms supply good solutions for this situation.

This paper is organized as follows. Section 2 shows Physical Programming
(PP) methodology and concepts associated to Class Function that allows de-
signers express their preferences in a understandable ’physical’ way. Section 3
describes the nonlinear optimization technique that has been used: Genetic Algo-
rithms (GA). Section 4 describes the application problem selected to illustrate
the benefits of the proposed methodology (PP+GA). In particular, the ACC
Robust Control Benchmark is used. Finally, section 5 shows the results and
compares them with other known results.

2 Physical Programming

Physical Programming (PP) is a methodology to solve a MO problem including
information about preferences for each objective and converting the problem
into a unique objective problem. To do it, PP introduces innovations on how to
include designer knowledge and preference. In a first step, PP converts designer
knowledge about the types of objectives and their desired values into previously
established Class Functions. With this step all variables are normalized and
preferences are included. Next step consists of aggregating all Class Functions
in a unique function and using an optimization technique to solve this new
problem. It is usual that the new problem was multimodal (several local minima),
then optimization technique had to be powerful enough to solve it. GAs have
demonstrated good performance in such type of problems and it will be the
proposal for this article.

If x is the vector of parameters, designer has to supply a way to evaluate
each specification by means of a function, gi(x), where subindex i is associated
to each specification. For each function a Class Function gi(gi(x)) is defined. The
shape of each Class Function gi is a key point to express designer preferences.

These functions can be hard or soft depending on the type of objective in-
volved in the problem. To convert all common situations the list of class to define
could be:

Soft classes

– Class-1s: Smaller is better.
– Class-2s: Larger is better.
– Class-3s: A value is better.
– Class-4s: A range is better.

Hard classes

– Class-1h: Must be smaller.
– Class-2h: Must be larger.
– Class-3h: Must be equal.
– Class-4h: Must be in a range.
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Fig. 1. Classes 1s, 2s, 3s and 4s

Once a Class Function is selected for an objective, the designer has to choose
gk

i values to establish preference ranges. For example, for a class-1s type gk
i val-

ues are g1
i . . . g5

i and the associated ranges:

– Highly Desirable (AD): gi ≤ g1
i

– Desirable (D): g1
i ≤ gi ≤ g2

i

– Tolerable (T): g2
i ≤ gi ≤ g3

i

– Undesirable (IND): g3
i ≤ gi ≤ g4

i

– Highly undesirable (AIND): g4
i ≤gi≤g5

i

– Unacceptable (INA): gi ≥ g5
i

These ranges are defined in physical units of the specification referred to,
that means the designer expresses preferences in a natural and intuitive way.

Fig. 1 shows an example of different soft classes (all other soft classes are
defined in a similar way) for different sets of designer range selection. In par-
ticular class-1s of the figure could correspond to an overshoot specification in a
controller design problem:

– Highly Desirable : δ ≤ 10%
– Desirable : 10% ≤ δ ≤ 20%
– Tolerable : 20% ≤ δ ≤ 30%

– Undesirable : 30% ≤ δ ≤ 40%
– Highly undesirable : 40% ≤ δ ≤ 50%
– Unacceptable: δ ≥ 50%

Regardless of the soft class function type, gi image has an adimensional and
strictly positive value (gi). Images of gk

i values, gk, have a key role, and are the
same value for all soft Class Function (then it is not necessary to distinguish
them with a subscript i). This characteristic produces a normalizing effect in gi

space for all gi variables.
For Hard classes, only two values are set possible or impossible and they

represent hard restrictions in a classical optimization problem.
Aggregated function combines all normalized objectives in a unique func-

tion. Then the problem is translated into a one-objective optimization problem.
Physical Programming establishes the following Aggregated Function:

J(x) = log10
1

nsc · g5

[
nsc∑
i=1

g(gi(x))

]
(1)
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(nsc) is the number of soft classes.
Minimization problem to solve is then:

x∗ = arg[min
x

J(x)] (2)

subject to Hard Class and x restrictions. Remember that x is the controller
parameter vector and it could be subject to design restrictions.

Problem (2) is, in general, a nonlinear optimization problem that could be
solved by several optimization techniques.

Logarithmic formulation of (1) tries to expand search range to obtain a reduc-
tion of iteration in search algorithm selected. Function (1) is based on addition
of all soft classes but with the important characteristic that all of them weight
the same. And, because of class function, all terms are independent of original
specification showing a similar shape.

Relationships x with gi (problem dependent) and these ones with g (class
function dependent) do not allow to assure that equation (1) has only one min-
imum. With several specifications the problem is more complex and multiple
minima presence is almost certain, then the quality of the solution is highly
sensitive to the optimization technique used.

As it is said, presence of local minima in (1) depends on relationships gi(x)
and gi(gi(x)). gi(x) is imposed by the specific problem but gi(gi) can be defined
to satisfy several properties that make easier optimization algorithm work.

With these considerations, soft class functions have to be defined with follow-
ing properties [7]: strictly positive, first derivative continuity and second deriva-
tive strictly positive.

Considering theses properties, it is possible to develop a method to build
class function [6] based on spline segments.

3 Nonlinear Optimization with Genetic Algorithm

Minimization of the aggregated function subject to restrictions could be a non-
linear multimodal optimization problem. To solve it, it is necessary to use an
adequate optimization technique. Genetic Algorithms (GAs) have demonstrated
their capabilities in this type of situation and then it is the proposed option for
this article.

A GA is an optimization technique that looks for the solution of the op-
timization problem, imitating species evolutionary mechanism [4], [5]. In these
type of algorithms, a set of individuals (so-called population) changes generation
by generation (evolution) adapting better to environment.

In an optimization problem, there is a function to optimize (cost function)
and a zone where to look for (search space). Every point of the search space had
an associated value of the function.

The different points of the search space are the different individuals of pop-
ulation. Similarly to natural genetic, every different individual is characterized
by a chromosome, in the optimization problem, this chromosome is made by the
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point coordinates in the search space x = (x1, x2, . . . , xn). Following the simile,
each coordinate corresponds to a gene.

The cost function value for an individual has to be understood as the adap-
tation level to the environment for such individual. For example, if it is a min-
imization problem for function J(x), it is understood an individual is better
adapted than another if it has a lower cost function value.

Evolutionary mechanism, that is, the rules for changing populations through-
out generations is performed by Genetic Operators. A general GA evolution
mechanism could be described as follows:

From an initial population (randomly generated), the next generation is ob-
tained as:

1. Some individuals are selected for the next generation. This selection is made
depending on adaptation level (cost function value). Such individuals with
better J(x) value have more possibilities to be selected (to survive).

2. To explore search space, an exchange of information between individuals is
performed by means of crossover. That produces a gene exchange between
chromosomes. The rate of individuals to crossover is fixed by Pc, crossover
probability.

3. An additional search space exploration is performed by mutation. Some in-
dividuals of the new generation are subject to a random variation in their
genes. The rate of individuals to be mutated is set by mutation probabil-
ity Pm.

In this general framework, there are several variation in the GA implemen-
tation; different gene codification, different genetic operator implementation,
etc. [4], [9].

Implementation for the present work has the following characteristics:

1. Real value codification [9], each gene has a real value.
2. J(x) is not directly used as cost function. A ’ranking’ operation is performed

[1]. First individuals are sorted in decreasing J(x) value and next, J(x) is
substituted by its position in such distribution, then each individual has a
new cost function value J ′(x). Ranking operation prevents the algorithm
from exhausting, it avoids clearly dominant individuals prevailing too soon.

3. Selection is made by the operator known as Stochastic Universal Sampling
(SUS) [2]. Survival probability of an individual (P (xi)) is guaranteed to be:

P (xi) =
J ′(xi)∑Nind

j=1 J ′(xj)
(3)

where Nind is the number of individuals.
4. For crossover it is used intermediate recombination operator [11]. Chromo-

somes sons (x′
1 and x′

2) are obtained through following operation on chro-
mosomes fathers (x1 and x2):

x′
1 = α1 · x1 + (1 − α1)x2 ; α1 ∈ [−d, 1 + d]

x′
2 = α2 · x2 + (1 − α2)x1 ; α2 ∈ [−d, 1 + d] (4)
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The operation could be done for the chromosome or for each gene separately.
In this last case random parameters α1 and α2 have to be generated for each
gene increasing search capabilities but with a higher computational cost.
Implemented GA has been adjusted as follows: α1 = α2 and generated for
each chromosome, d = 0 and Pc = 0.8.

5. Mutation operation is done with a probability Pm = 0.1 and a normal dis-
tribution with standard deviation set to 20% of search space range.

4 Robust Control Benchmark Solution

Wie and Bernstein [13] proposed a serie of problems for robust control where
controller designer has to achieve a tradeoff between maximizing stability and
robust performances of the system, and minimizing control effort.

Fig. 2 shows the process described in the benchmark. It consists of a flexible
structure of two masses connected by a spring. State space model is:


ẋ1

ẋ2

ẋ3

ẋ4


 =




0 0 1 0
0 0 0 1

−k/m1 k/m1 0 0
k/m2 −k/m2 0 0







x1

x2

x3

x4


 +




0
0

1/m1

0


u +




0
0
0
0


w

y = x2 + v

(5)

where x1 and x2 are positions, x3 and x4 are speeds for mass 1 and 2.
Nominal values for m1 and m2 masses and for spring constant k are 1. Control

action u is the strength applied to mass 1 and the controlled variable is mass 2
position affected by noise measurement y. Moreover, it exists a disturbance w
on mass 2. [14] proposed three control scenario, but in this article only the first
one is considered:

– Closed loop system has to be stable for m1 = m2 = 1 and k ∈ [0.5 . . . 2].
– Maximum settling time for nominal system (m1 = m2 = k = 1) has to be

15 sec. for unity impulse in perturbation w at time t = 0.
– Phase and gain margins have to be reasonable for a reasonable bandwidth.
– Closed loop have to be relatively insensitive to high frequency noise in the

measurements.

Fig. 2. Two masses and spring system with uncertainties in parameters
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Table 1. Preferences for controller design

g1
i g2

i g3
i g4

i g5
i

Re(λ)max -0.01 -0.005 -0.001 -0.0005 -0.0001
umax 0.8 0.85 0.95 1 2
tmax
est 15 40 80 90 100

noisemax 1.8 2 2.2 2.5 3
unom 0.9 1.2 2 2.5 3
tnom
est 14 14.2 14.4 14.6 15

– Control effort has to be minimized.
– Controller complexity has to be minimized.

Numerator and denominator coefficients conform the vector parameters to
obtain by optimization, x. Specification or design objectives (gi(x)) have to be
quantities that designer wants to maximize, minimize, set to a specific value, etc.
For the robust control benchmark six functions that supply specification values
for a controller will be used:

1. Nominal settling time (tnom
est ): Maintaining interpretation made in [12]

and [8]. It is assumed that controlled variable achieves steady state for a unit
impulse in perturbation w when it is in ±0.1 units range.

2. Worst case settling time (tmax
est ): Maximum settling time (in ±0.1 range)

for a given controller evaluated in the worst case k = 0.5 or k = 2.
3. Robust stability and robust performances (Re(λ)max): [12] shows that

phase and gain margins for the worst case are poor indicators of robustness.
Instead of, closed loop poles for the worst case can be used: Re(λ)max =
maxk∈[0.5...2]Re(λ[A(k)]) (A is the closed loop system matrix).

4. Noise sensibility (noisemax): For a frequency range, noise sensitivity is
measured by the ratio of noise amplification in front of a −20db/dec slope.

noisemax = maxk∈[0.5,2]

(∣∣∣∣u(jw)
v(jw)

∣∣∣∣ /
∣∣∣∣ 1
jw

∣∣∣∣
)

; w ∈ [100 . . . 10000] (6)

5. Nominal control effort (unom): Maximum control action produced for a
unit impulse in disturbance at nominal case.

6. Maximum control effort (umax): Maximum control action produced for
a unit impulse in the disturbance when there are uncertainties.

Then there are six algorithms (or functions) that supply the above described val-
ues for every combination of controller numerator and denominator coefficients.
These functions can be used to compare performance obtained by other authors.
Controllers with transfer function of different complexity and strictly proper (a
priori selected) have been designed.

Class 1s functions have been selected for all objectives. Table 1 shows pref-
erences (by means of extremes values for each preference interval) for the six
specifications.
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5 Results

In this section, results for the robust control benchmark using Physical Program-
ming with Genetic Algorithms are analyzed. There is previous work that collects
solutions [12] but it focussed on designing also obtained with an application of
Physical Programming [8] but with classical nonlinear optimization techniques.
The proposed solution goes beyond previous ones.

Table 2 shows two controllers proposed by other authors and referenced as
good solutions (W34 and M34). Controllers obtained with PP+GA are also
presented at Table 2 (PPGA34 and PPGA23*). Comparison between them has
been done analyzing the six proposed specifications. For every controller, numeric
values of each specification and obtained range are shown at Table 3.

Controllers obtained using PP+GA are better for all specifications. Even
with controller of lower complexity, the performances are improved, this is the
case of PPGA23*. Solution proposed by [8] M34 is not even a local minimum.
Minimization of aggregated function with restrictions causes a very complex
multimodal problem that GA achieves to solve. Notice that for PPGA controllers

Table 2. Solutions for the robust control benchmark

Proposal (m, n) f.d.t.

Wie (W34) [13] (3, 4)
−2.13s3 − 5.327s2 + 6.273s + 1.015

s4 + 4.68s3 + 12.94s2 + 18.36s + 12.68

Messac (M34) [8] (3, 4)
−0.66s3 − 4.101s2 + 4.558s + 0.627

s4 + 3.416s3 + 10.15s2 + 13.52s + 9.281

PPGA34 (3, 4)
−0.3226s3 − 2.276s2 + 4.79s + 0.7539

s4 + 2.075s3 + 8.664s2 + 11.32s + 7.825

PPGA23* (2,3)
−1.5704s2 + 3.1911s + 0.52

s3 + 5.2347s2 + 7.2333s + 5.2436

Table 3. Specifications and obtained ranges. AD-Highly Desirable, D-Desirable, T-
Tolerable, IND-Undesirable, AIND-Highly Undesirable, INA-Unacceptable

Controller Re(λ)max umax tmax
est noisemax unom tnom

est

W34 -0.0427 0.6793 22.125 2.1317 0.5595 16.7756
AD AD D T AD IND

M34 -0.0542 0.6681 18.375 0.6620 0.5127 13.3580
AD AD D AD AD AD

PPGA34 -0.0166 0.7194 11.625 0.3241 0.5872 10.8731
AD AD AD AD AD AD

PPGA23* -0.0219 0.5259 15.000 1.5698 0.4170 10.8731
AD AD AD AD AD AD
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Fig. 3. (a) Nominal settling time for closed loop with W34, PP34 and PPGA34. (b)
Control action in the worst case (k = 0.5) for W34, PP34 and PPGA34

all specifications are in AD range, then it is possible (because of GA application)
to improve performance selecting a more restrictive performance.

Fig. 3(a) shows process output for a unit impulse in the disturbance. PPGA34
presents better performances than other controllers of the same complexity.

Better performances are obtained without increasing excessively control effort
(Fig. 3(b)), because PPGA34 also considers preferences in this specification.

6 Conclusions

A new methodology to design controllers has been presented. It allows to incor-
porate, in a simple and intuitive way, different types of specification. Then it is
possible to design robust controller in a simpler way.

Fundamentals about incorporating specifications and design preferences are
based on Physical Programming methodology. The multiobjective problem is
translated into a normalized domain by means of Class Functions, then all these
Class Functions are aggregated in a single cost function. It is possible to achieve
a successful minimization if an adequate optimization technique is selected and
tuned. Genetic Algorithms have a fundamental role and have demonstrated very
good performances in such multimodal complex problems (ACC Robust Control
Benchmark). All solutions have improved previous work, even such obtained
with Physical Programming but with other optimizers.

The methodology is applicable to other design domains different from con-
troller design. The only necessary condition consists of the fact that the design
has to be based on a several criteria optimization.

Acknowledgements

Partially financed by AGL2002-04108C02-01 and DPI2001-3106C02-02 MCYT.



Genetic Algorithms for Multiobjective Controller Design 251

References

1. T. Back. Evolutionary Algorithms in Theory and Practice. Oxford University
Press, New York, 1996.

2. J.E. Baker. Reducing Bias and Inefficiency in the Selection Algorithms, volume
Proceedings of the Second International Conference on Genetic Algorithms, pages
14–21. Lawrence Erlbaum Associates,, Hillsdale, NJ, Grefenstette, J.J. (ed.) edi-
tion, 1987.

3. Carlos A. Coello Coello, David A. Van Veldhuizen, and Gary B. Lamont. Evolution-
ary algorithms for solving multi-objetive problems. Kluwer Academic Publishers,
2002.

4. D.E. Goldberg. Genetic Algorithms in search, optimization and machine learning.
Addison-Wesley, 1989.

5. J.H. Holland. Adaptation in natural and artificial systems. Ann Arbor: The Uni-
versity of Michigan Press, 1975.

6. Miguel A. Mart́ınez, Javier Sanchis, and Xavier Blasco. Algoritmos genéticos en
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Abstract. This paper introduces a new crossover operator for the ge-
netic programming (GP)paradigm, the grammar-based crossover (GBX).
This operator works with any grammar-guided genetic programming sys-
tem. GBX has three important features: it prevents the growth of tree-
based GP individuals (a phenomenon known as code bloat), it provides
a satisfactory trade-off between the search space exploration and the ex-
ploitation capabilities by preserving the context in which subtrees appear
in the parent trees and, finally, it takes advantage of the main feature
of ambiguous grammars, namely, that there is more than one derivation
tree for some sentences (solutions). These features give GBX a high con-
vergence speed and low probability of getting trapped in local optima,
as shown throughout the comparison of the results achieved by GBX
with other relevant crossover operators in two experiments: a laboratory
problem and a real-world task: breast cancer prognosis.

1 Introduction

Genetic programming is a means of automatically generating computer programs
by employing operations inspired by biological evolution, such as reproduction,
crossover and mutation, to breed a population of trial solutions that improves
over time [1].

The crossover operator bears most responsibility for the acceptable evolution
of the genetic programming algorithm, because it governs most of the search pro-
cess (evolution). It usually operates on two parents and produces two offspring
using parts of each parent. One of the first of these important operators was
Standard crossover defined by Koza [2], which randomly swaps subtrees in both
parent trees to generate the offspring. The main advantage of such crossovers
is that they maintain diversity, because crossing two identical trees can yield
different trees. This excessive exploration capability makes the trees large and
complex [3], as the search space of a GP problem is potentially unlimited and
individuals may grow in size during the evolutionary process. This situation,
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known as bloat or code bloat, has a very high computational cost, degrading the
convergence speed of GP [4].

Size Fair [5] and Fair [6] crossover operators were developed to limit bloat,
increasing exploitation capabilities to stop these operators from conveniently
progressing to larger areas of the search space where solutions are more plentiful.
The result of this overexploitation is a greater probability of getting trapped in
local optima [7].

The quest for a satisfactory trade-off between exploration and exploitation
to produce a genetic programming system that yields good results led to the so-
called closure problem, which consists of avoiding the generation of syntactically
illegal programs: individuals that do not represent possible solutions to the prob-
lem [8]. This is another of the drawbacks facing GP when executing a crossover
operator, because it notably detracts from the convergence process. Context-free
grammar genetic programming was introduced to overcome this problem. This
approach uses the parse trees of a given context-free grammar as the individuals
of the population [9]. Nowadays, one of the main crossover operators most com-
monly used with this representation is Whigham’s crossover (WX) [8],[10],[11].
What this operator does is basically to randomly choose a node from the second
parent tree that represents the same non-terminal symbol as the node chosen,
also randomly, in the first parent tree. Having chosen the crossover nodes, the
operator swaps the subtrees below these non-terminals. The main shortcoming
of WX is that there are other possible choices of nodes in the second parent that
are not explored and which could lead towards the sought-after solution. This
limitation of the exploration capability leads to higher probability of getting
trapped in local optima.

This paper introduces a new crossover operator, called grammar-based
crossover operator (GBX), designed to work in context-free grammar genetic
programming systems. The three main features of this operator address the
above-mentioned problems in GP: it prevents the generation of illegal trees, it
explores all nodes in the parent trees that can generate new legal individuals that
lead to the sought-after solution (a feature that is enhanced by using ambiguous
grammars) [12], and it has an efficient bloat control mechanism. Experimental
tests have been run to search for a mathematically true arithmetical expression
and the solution to a real-world problem: breast cancer prognosis. The results
achieved, which have been compared with other important operators like WX,
Fair and Standard crossover, show that GBX has well-balanced exploitation and
exploration capabilities, which increases the local search speed of the genetic
programming system, while avoiding local optima.

2 The Genetic Programming System

The genetic programming system is able to find solutions to a problem starting
from the formal definition of the syntactical constraints of the problem using
a context-free grammar, whose language represents the search space, and an
evaluation function, which provides a fitness value for each of the possible so-
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lutions generated to drive the search process and finally choose the optimal
solution.

A context-free grammar G is defined as a string-rewiring system comprising
a 4-tuple G = (S,ΣN , ΣT , P ), where S represents the start symbol or axiom of
the grammar,ΣN is the alphabet of non-terminal symbols, ΣT is the alphabet of
terminal symbols,ΣN∩ΣT = ∅, and P is the set of production rules, written in
BNF (Backus-Naur Form). Based on this grammar, the individuals that are part
of the genetic population are defined as derivation trees, where the root is the
axiom S, the internal nodes contain only non-terminal symbols and the external
nodes (leaves) contain only terminal symbols. A derivation tree represents the
series of derivation steps that generate a sentence, which is a possible solution
to the problem. Therefore, an individual codifies a sentence of the language
generated by the grammar as a derivation tree.

The input for the evaluation function F is any of the individuals that are mem-
bers of the genetic programming algorithm population. This evaluation function
provides a fitness measure that indicates how good the solution codified by the
individual is for the problem at hand.

The structure of the proposed system is shown in Figure 1 and consists of
two modules.The input for the evolution engine module is the grammar that
defines the search space of the problem used to generate the random initial
population of trees with a previously established maximum depth. The evolution
engine module employs the genetic operators (selection, crossover, mutation and
replacement) to search for the optimal solution. This module implements the
GBX. The input for the evaluation module is an evaluation function used to
calculate the fitness of the individuals (trees) generated by the evolution engine
module, from the initial population or from the genetic operators, as well as
the mean fitness of the entire population. To do so, a decodification process is
implemented, which consists of concatenating the terminal symbols included in
the leaves of the derivation tree to get the original sentence.

Fig. 1. The genetic programming system schema
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3 The Grammar-Based Crossover

GBX is a general-purpose operator for optimization problems with context-free
grammar genetic programming. To give a better understanding of the GBX, a
simple laboratory example is given, in which a genetic programming system is
used to find out a mathematically true expression (equality). The syntax of the
equalities used in the population can be defined using the grammar expressed
in formula 1. Note that this is an ambiguous grammar, since a sentence can be
derived from more than one derivation tree. Specifically, neither the non-terminal
symbol F, nor the production rules that include it are needed. However, this
example has been used to better illustrate the features of GBX.

G = (S,ΣN , ΣT , P ) with :
ΣT = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,+,−,=}
ΣN = {S,E, F,N}

P = {S → E = N

E → E + E|E − E|F + E|F − E|N
F → N

N → 0|1|2|3|4|5|6|7|8|9}

(1)

One possible solution to the problem would be, for example, 4 + 3 = 7. The
expression 6 + 4 = 7 is correct, as it follows the syntax defined by the grammar,
but it is not a solution. Suppose we want to cross the expressions 6 + 4 = 7
and 3 + 2 + 4 = 8, Figure 2 shows both codifications as derivation trees, which
is how they are managed by GBX. In Figure 2, the root represents the axiom
of the grammar, circles are non-terminals and the other symbols are terminals.
The GBX consists of eight steps:

1. A node with a non-terminal symbol is randomly chosen from the first parent
(except the axiom). This node is called crossover node or crossover place.
The crossover node of the stated example, corresponding to the non-terminal
E, is highlighted in gray in Figure 3.

2. The parent node of the node chosen in step 1 is searched. As we are working
with a context-free grammar, this is a non-terminal symbol, which is the

Fig. 2. The two individuals used for explanatory purposes
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Fig. 3. Crossover node (gray), parent node (arrow) and main derivation (dashed line)

antecedent of one or more production rules. The consequents of all these
productions are stored in an array R, which completes this second step.
In the case of the stated example, the parent node of crossover node E is
also E, which is illustrated in Figure 3. According to the production rules
defined for the grammar we are using (formula 1), E is the antecedent of five
productions E ::= E + E, E ::= E − E, E ::= F + E, E ::= F − E and
E ::= N , hence the array R = [E + E;E − E;F + E;F − E;N ].

3. The derivation produced by the parent of the crossover node is called main
derivation (A ::= C). Additionally, the derivation length (l) is defined as
the number of non-terminals and terminals included in the consequent of a
derivation. In this third step of GBX, the 3-tuple T (l, p, C) is calculated and
stored. This 3-tuple contains the main derivation length, the position (p) of
the crossover node in the main derivation and the consequent of the main
derivation (C). The dashed line in Figure 3 shows the main derivation for
the stated example: E ::= E + E. The main derivation length is 3 (l = 3),
the position of the crossover node in its consequent is 1 (p = 1) and its
consequent is E + E (C = E + E). Hence, the 3-tuple T = (3, 1, E + E).

4. All the consequents with different lengths from the main derivation are
deleted from array R. In the stated example, array R contains five con-
sequents of lengths 3 and 1, and the consequent of production rule E ::= N
is, therefore, deleted, leaving R = [E + E;E − E;F + E;F − E].

5. For each element of R, all the symbols, except the one that is located in
the position of the crossover node, are compared with the symbols of the
consequent of the main derivation. Then, all the consequents with any dif-
ference are deleted from R. In the stated example, the crossover node is
located in the first position in the consequent of the main derivation and,
therefore, +E, −E, +E and −E are compared with +E. As the second
and forth consequents differ (- and +), they are deleted from R, leaving
R = [E + E;F + E].

6. The set X formed by all the symbols in the consequents of R that are in
the same position as the crossover node is calculated. This set establishes
the non-terminal symbols that can be chosen as crossover nodes in the sec-
ond parent. As there are two consequents in the proposed example and the
crossover node is in first place, X = {E,F}.
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Fig. 4. Once the crossover nodes are chosen, GBX interchanges the two subtrees to
generate two new valid ones

7. The crossover node within the second parent is randomly chosen from any of
the nodes that have a symbol that is a member of the set X. The crossover
node chosen in the second parent is shaded gray in Figure 4.

8. The two new individuals produced as the offspring are calculated by swap-
ping the two subtrees whose roots are the calculated crossover nodes of the
two parents. Figure 4 shows this process.

From the algorithm proposed above, we find that GBX has three main attractive
features:

1. It is easy to incorporate control bloat in the seventh step by discarding all
the nodes that generate offspring trees deeper than a previously established
value D. This operation can be done very efficiently before swapping subtrees
by adding the length of the first parent from the root to the crossover node,
plus the length of the subtree of the second parent to be swapped. If the
result of this operation is lower than or equal to D, then the first swap can
be made to generate the first offspring. Interchanging the roles of the parents,
a similar procedure can be followed to produce the second offspring.

For the example in Figure 4, the length of the first parent from the root
to the crossover node is 2 and the length of the second subtree is also 2. If
4 ≤ D (as assumed in the example), then we get the individual 3 + 4 = 7 .
Interchanging the roles, the length of the first subtree is 3, whereas it is 2 for
the second tree, and it is assumed that 5 ≤ D to produce the new individual
6 + 2 + 4 = 8.

2. The steps of the algorithm for GBX assure that the offspring produced are
always composed of two legal trees. This is very positive for the evolution
process, as all the individuals generated are possible solutions to the problem.

3. GBX takes into account all the possible nodes of the second parent that can
generate legal individuals starting from the crossover node previously chosen
from the first parent. The proposed example has been especially prepared
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to illustrate this feature: having chosen the crossover node from parent 1
(non-terminal E), GBX calculates that all the nodes of the second parent
with non-terminal symbols E or F are valid for crossover. Possible nodes
for crossover in the second parent generated by other operators, like WX,
would, in this case, contain only the non-terminal symbol E. The possibility
that GBX offers of also being able to choose node F is what leads to the
final solution (3 + 4 = 7) in a single iteration.

4 Results

Two different experiments were carried out to test GBX: the laboratory prob-
lem syntactically defined in the grammar of formula 1, designed to show what
benefits can be gained by using ambiguous grammars, and the real-world task
of diagnosing breast cancer. These tests were run using the WX, Fair and Stan-
dard crossover operators, apart from GBX, with the aim of comparing the results
yielded by each one.

For each experiment, a set of 100 runs was performed. After some tuning
runs, we decided the following settings for the operator rates of the genetic pro-
gramming system: 75% crossover, 20% straight reproduction and 5% mutation.
The tournament size was 7 and SSGA was the replacement method.

The objective of the first experiment was to search for a true mathematical
expression that follows the syntax defined by the context-free grammar of for-
mula 1. The population size employed was 20, the size ceiling limit was set to
6. The fitness function consisted of calculating the absolute value of the differ-
ence between the left- and right-hand sides of the expression. Figure 5 shows
the evolution process for the average fitness of the population using each of the
four crossover operators. It takes GBX an average of 8.1 generations to get true
expressions, WX 10.4, Fair 15.2 and Standard crossover 16.7 It is clear that GBX
outperforms the other three crossover operators. This is because GBX is able to
take advantage of the ambiguity of the grammar to explore all possible paths
that lead to the sought-after solution.

Fig. 5. Fitness evolution for the expressions search problem
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Fig. 6. Fitness evolution for breast cancer prognosis

The second experiment involved searching a knowledge base of fuzzy rules
that could give a prognosis of suspicious masses being cancer. This is a complex
classification problem where a set of features that describes a breast abnormal-
ity has to be assigned to a class: benign or malignant. The data employed for
this problem included 315 sets of features from lesions that had been detected
in mammograms of real patients. Each lesion was defined by 7 features that de-
scribed the morphology (size, border, shape), localization (zone, side, depth) and
patient’s age. The grammar employed was formed by 17 non-terminal symbols,
46 terminal symbols and 47 production rules.

The population size employed was 1000, the size ceiling limit was set to
40. The fitness function consisted of calculating the number of misclassified
patterns. Figure 6 shows the evolution process for each of the four crossover
operators.

In this experiment, the Standard crossover yields the worst results, because
it maintains an excessive diversity in the population, which prevents it from
focusing on one of the possible solutions. The effect of Fair crossover is the
opposite, leading very quickly to one of the possible solutions with an initially
high convergence speed, which slows down if convergence is towards a local
optimum. WX produces good results, as is to be expected of a crossover operator
designed to work on grammar-guided genetic programming systems, bettered
only by the proposed crossover. This evidences the benefits of the possibility
of exploring all the nodes that generate legal derivation trees in the second
parent.

Table 1 shows the analytical results of this experiment: the average fitness of
the best individual in 500 generations, the average number of iterations needed
to reach a fitness of 150 (165 correctly classified patterns) and the percentage
of times that the above objective is achieved (not trapping in local optima).
The stop condition for calculating the values of Table 1 was when there was
no observed improvement after 50 consecutive generations. Note the similarity
between WX and GBX in terms of the average number of iterations. However,
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Table 1. Analytical results for the breast cancer prognosis problem

Crossover Op Avg. fitness Avg. number of iterations Succesful runs

Standard 163.74 715.15 61/100
Fair 127.33 250.28 85/100
WX 84.74 72.34 93/100
GBX 57.72 77.82 97/100

GBX is less likely to get trapped in local optima and has a better final fitness
than the other three.

The fuzzy knowledge base built by the genetic programming system with
GBX was used to prognosticate the 315 breast lesions and correctly classified
81% of benign and 83% of malignant cases. These results are similar to clas-
sifications by expert radiologists in the case of malignant lesions and slightly
better for benign cases, because doctors prognosticate doubtful findings as ma-
lignant.

5 Conclusions

This paper presented a new crossover operator, the grammar-based crossover,
to work on grammar-guided genetic programming systems. The results section
demonstrated that this operator strikes a satisfactory balance between explo-
ration and exploitation capabilities, which gives it a high convergence speed,
while eluding local optima. To be able to achieve these results, the proposed
crossover includes two important features. The first is a mechanism for bloat
control, whose computational cost is practically negligible. The second feature,
which is novel in grammar-guided genetic programming systems, means that,
having chosen a crossover node in the first parent, any nodes likely to gener-
ate legal individuals in the second parent rather than just nodes with the same
non-terminal symbols can be chosen.

In the proposed experiments, the population was generated randomly. This
is too complex, especially for the breast cancer prognosis problem, where 1000
individuals need to be generated. Research efforts now target the use of the
context-free grammar to generate the initial population more intelligently and,
therefore, more efficiently to satisfy the syntactical constraints and size ceiling
limit. This same algorithm will be used to assure that the mutation operator is
not confined to the replacement of one sub-derivation tree by another randomly
generated subtree rooted in the same non-terminal symbol, but can include other
legal non-terminal symbols.

In the two experiments described in this paper, the use of an ambiguous
grammar benefits GBX. This points to other promising research work to find
the answers to questions such as how and/or to what extent the ambiguity
of the grammar benefits the convergence of GBX and how much ambiguity is
needed to get the best results in terms of efficiency.
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Abstract. Whereas the selection concept of Genetic Algorithms (GAs)
and Genetic Programming (GP) is basically realized by the selection of
above-average parents for reproduction, Evolution Strategies (ES) use
the fitness of newly evolved offspring as the basis for selection (survival
of the fittest due to birth surplus). This contribution proposes a generic
and enhanced selection model for GAs considering selection aspects of
population genetics and ES. Some selected aspects of these enhanced
techniques are discussed exemplarily on the basis of standardized bench-
mark problems.

1 Introduction

In contrast to other heuristic optimization techniques Genetic Algorithms and
certainly also Genetic Programming (GP) take a fundamentally different ap-
proach by considering recombination (crossover) as their main operator. The
essential difference to neighborhood-based techniques is given by the fact that
recombination is a sexual operator, i.e. properties of individuals from differ-
ent regions of the search space are combined in new individuals. Therefore, the
advantage of applying GAs to hard optimization problems lies in their abil-
ity to scan broader regions of the solution space than heuristic methods based
upon neighborhood search do. Nevertheless, also GAs are frequently faced with
a problem which, at least in its impact, is quite similar to the problem of
stagnating in a local but not global optimum. This drawback, called prema-
ture convergence in the terminology of GAs, occurs if the population of a GA
reaches such a suboptimal state that the genetic operators are no longer able
to produce offspring that are able to outperform their parents (e.g. [5], [1]).
This happens if the genetic information stored in the individuals of a popu-
lation does not contain that genetic information which would be necessary to
further improve the solution quality. Therefore, in contrast to the present con-
tribution, the topic of premature convergence is considered to be closely related
to the loss of genetic variation in the entire population in GA-research [11],
[15]. In this contribution we do not identify the reasons for premature conver-
gence in the loss of genetic variation in general but more specifically in the loss

J. Mira and J.R. Álvarez (Eds.): IWINAC 2005, LNCS 3562, pp. 262–271, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



GA-Selection Revisited from an ES-Driven Point of View 263

of what we call essential genetic information, i.e. in the loss of alleles which
are part of a global optimal solution. Therefore, we will denote the genetic
information of the global optimal (which may be unknown a priori) solution
as essential genetic information in the following. If parts of this essential ge-
netic information are missing, premature convergence is already predetermined
in some way.

A very essential question about the general performance of a GA is, whether
or not good parents are able to produce children of comparable or even better
fitness (the building block hypothesis implicitly relies on this). In natural evolu-
tion, this is almost always true. For GAs this property is not so easy to guarantee.
The disillusioning fact is that the user has to take care of an appropriate coding
in order to make this fundamental property hold.

In order to somehow overcome this strong requirement we try to get to the
bottom of reasons for premature convergence from a technical as well as from a
population genetics inspired point of view and draw some essential interconnec-
tions.

The basic idea of the new selection model is to consider not only the fitness
of the parents in order to produce a child for the ongoing evolutionary process.
Additionally, the fitness value of the produced child is compared with the fitness
values of its own parents. The child is accepted as a candidate for the further
evolutionary process if and only if the reproduction operator was able to pro-
duce a child that could outperform the fitness of its own parents. This strategy
guarantees that evolution is presumed mainly with crossover results that were
able to mix the properties of their parents in an advantageous way. I.e. survival
of the fittest alleles is rather supported than survival of the fittest
individuals which is a very essential aspect for the preservation of essential
genetic information stored in many individuals (which may not be the fittest in
the sense of individual fitness).

2 Some Basic Considerations About GA-Selection

In terms of goal orientedness, selection is the driving force of GAs. In contrast
to crossover and mutation, selection is completely generic, i.e. independent of
the actually employed problem and its representation. A fitness function assigns
a score to each individual in a population that indicates the ’quality’ of the
solution the individual represents. The fitness function is often given as part of
the problem description or based upon the objective function. In the Standard
GA the probability that a chromosome in the current population is selected
for reproduction is proportional to its fitness. However, there are also many
other ways of accomplishing selection. These include linear-rank selection or
tournament selection (cf. e.g. [7], [10]).

However, all evenly mentioned GA-selection principles have one thing in com-
mon:

They all just consider the aspect of sexual selection, i.e. mechanisms of se-
lection only come into play for the selection of parents for reproduction. The
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enhanced selection model which will be described in the following section defies
this limitation by considering selection in a more general sense.

Selection and Selection Pressure: In the terminology of population genetics
the classical GA selection concept is known as sexual selection. In the popula-
tion genetics view, sexual selection covers only a rather small aspect of selection
which appears when individuals have to compete to attract mates for repro-
duction. The population genetics basic selection model considers the selection
process in the following way:

random mating → selection → random mating → selection → ......

I.e. selection is considered to depend mainly on the probability of surviving of
newborn individuals until they reach pubescence which is called viability in the
terminology of population genetics. The essential aspect of offspring selection in
the interpretation of selection is rarely considered in conventional GA selection.
The classical (µ, λ) Evolution Strategy in contrast does this very well: Reconsid-
ering the basic functioning of a (µ, λ) ES in terms of selection, µ parents produce
λ (λ ≥ µ) offspring from which the best µ are selected as members of the next
generation. In contrast to GAs where selection pressure is predetermined by the
choice of the mating scheme and the replacement strategy, ES allow an easy
steering of selection pressure by the ratio between µ and λ. The selection pres-
sure steering model introduced in Section 3 picks up this basic idea of ES and
transforms these concepts for GAs in order to be have an adjustable selection
pressure (independent of the mating scheme and replacement strategy) at one’s
disposal.

Our advanced selection scheme allowing self-adaptive steering of selection
pressure aims to transform the basic ideas for improving the performance of
GAs. In doing so the survival probability is determined by a comparison of the
fitness of the newly generated individual with the fitness values of its parents.

A very important consequence of selection in population genetics as well as
in evolutionary computation is its influence on certain alleles. As a matter of
principle there are four possibilities for each allele in the population:

– The allele is fixed in the population.
– The allele is lost in the population.
– The allele frequency converges to an equilibrium state.
– The allele frequency remains unchanged.

The basic approaches for retarding premature convergence discussed in GA
literature aim at the maintenance of genetic diversity. The most common tech-
niques for this purpose are based upon preselection [3], crowding [4], or fitness-
sharing [6]. The main idea of these techniques is to maintain genetic diversity by
the preferred replacement of similar individuals [3], [4] or by the fitness-sharing
of individuals which are located in densely populated regions [6]. While methods
based upon [4] or [6] require some kind of neighborhood measure depending on
the problem representation, [6] is additionally quite restricted to proportional
selection. Moreover, these techniques have the common goal to maintain genetic



GA-Selection Revisited from an ES-Driven Point of View 265

diversity which is very important in natural evolution where a rich gene pool is
the guarantor in terms of adaptiveness w.r.t. changing environmental conditions.

In case of artificial genetic search as performed by a GA the optimization goal
does not change during the run of a GA and the fixing of alleles of high quality
solutions is desirable in the same manner as the erasement of alleles which are
definitely not part of a good solution in order to reduce the search space and make
genetic search more goal-oriented. I.e. we claim that pure diversity maintenance
mechanisms as suggested in [3], [4], or [6] do not support goal-oriented genetic
search w.r.t the locating of global optimal solutions.

3 An Enhanced Selection Model for Self-adaptive
Steering of Selection Pressure

The basic idea to create and evaluate a certain amount (greater or equal popula-
tion size) of offspring, to be considered for future members of the next generation,
is adapted from Evolution Strategies. Self-adaption comes into play when con-
sidering the question which amount of offspring is necessary to be created at
each round, and which of these candidates are to be selected as members of the
next generation, i.e. for the ongoing evolutionary process. In order to keep the
concepts generic, no problem specific information about the solution space is
allowed to be used for stating the self-adaptive model. Thus, it is desirable to
systematically utilize just the fitness information of the individuals of the actual
generation for building up the next generation of individuals, in order to keep
the new concepts and methods generic. In principle, the new selection strategy
acts in the following way:

The first selection step chooses the parents for crossover either randomly
or in the well-known way of GAs by roulette-wheel, linear-rank, or some kind
of tournament selection strategy. After having performed crossover and muta-
tion with the selected parents we introduce a further selection mechanism that
considers the success of the apparently applied reproduction in order to assure
the proceeding of genetic search mainly with successful offspring in that way
that the used crossover and mutation operators were able to create a child that
surpasses its parents’ fitness. Therefore, a new parameter, called success ratio
(SuccRatio ∈ [0, 1]), is introduced. The success ratio gives the quotient of the
next population members that have to be generated by successful mating in re-
lation to the total population size. Our adaptation of Rechenberg’s success rule
[8] for GAs says that a child is successful if its fitness is better than the fitness of
its parents, whereby the meaning of ’better’ has to be explained in more detail:
is a child better than its parents, if it surpasses the fitness of the weaker, the
better, or is it in fact some kind of mean value of both?

For this problem we have decided to introduce a cooling strategy similar to
Simulated Annealing. Following the basic principle of Simulated Annealing we
claim that an offspring only has to surpass the fitness value of the worse parent
in order to be considered as ’successful’ at the beginning and while evolution
proceeds the child has to be better than a fitness value continuously increasing
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Fig. 1. Flowchart for embedding the new selection principle into a Genetic Algorithm

between the fitness of the weaker and the better parent. As in the case of Simu-
lated Annealing, this strategy effects a broader search at the beginning whereas
at the end of the search process this operator acts in a more and more directed
way. Having filled up the claimed ratio (SuccRatio) of the next generation with
successful individuals in the above meaning, the rest of the next generation
((1 − SuccRatio) · |POP |) is simply filled up with individuals randomly chosen
from the pool of individuals that were also created by crossover but did not
reach the success criterion. The actual selection pressure ActSelPress at the
end of a single generation is defined by the quotient of individuals that had to
be considered until the success ratio was reached and the number of individuals
in the population in the following way: ActSelPress = |POP |SuccRatio+|POOL|

|POP | .
Figure 1 shows the operating sequence of the above described concepts. With

an upper limit of selection pressure (MaxSelPress) defining the maximum num-
ber of children considered for the next generation (as a multiple of the actual
population size) that may be produced in order to fulfill the success ratio, this
new model also functions as a precise detector of premature convergence:

If it is no longer possible to find a sufficient number of (SuccRatio · |POP |)
offspring outperforming their own parents even if (MaxSelPress · |POP |) can-
didates have been generated, premature convergence has occurred.

As a basic principle of this selection model a higher success ratio causes higher
selection pressure. Nevertheless, higher settings of success ratio and therefore of
selection pressure do not necessarily cause premature convergence as the preser-
vation of fitter alleles is additionally supported and not only the preservation of
fitter individuals.

Also it is possible within this model to state selection pressure in a very intu-
itive way that is quite similar to the notation of selection pressure in Evolution
Strategies. Concretely, we define the actual selection pressure as the ratio of
individuals that had to be generated in order to fulfill the success ratio to the
population size. For example, if we work with a population size of say 100 and
it would be necessary to generate 1000 individuals in order to fulfill the success
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ratio, the actual selection pressure would have a value of 10. Via these means
we are in a position to attack several reasons for premature convergence as il-
lustrated in the following sections. Furthermore, this strategy has proven to act
as a precise mechanism for self-adaptive selection pressure steering, which is of
major importance in the migration phases of parallel evolutionary algorithms.
The aspects of offspring selection w.r.t. parallel GAs are combined in the parallel
SASEGASA-algorithm [1].

4 Empirical Discussion

The empirical section is subdivided into two parts:
The first subsection aims to highlight the main message of the paper (preser-

vation of essential alleles). As the scope of the present work does not allow
a deeper and more sophisticated analysis of different problem situations, the
second part of the experimental discussion gives some references to related con-
tributions which include a more detailed and statistically more relevant experi-
mental discussion on the basis of several benchmark but also practical problems
on which we have applied the new selection model recently. All empirical work
shown and referred in this section have been implemented and performed using
the HeuristicLab environment [12].1

4.1 Conservation of Essential Genetic Information

This subsection aims to point out the importance of mutation for the recovery of
essential genetic information in the case of conventional GAs in order to oppose
these results with the results being achieved with the enhanced selection model
discussed in this paper. By reasons of compactness, the results are mainly shown
on the basis of diagrams and give only a brief description of introduced operators,
parameter settings, and test environments. Furthermore, the chosen benchmark
instance is of rather small dimension in order to allow the observation of essential
alleles during the run of the algorithm.

The results displayed in Figure 2 (left diagram) show the effect of mutation
for reintroducing already lost genetic information. The horizontal line of the
diagram shows the number of iterations and the vertical line stands for the
solution quality. The bottom line indicates the global optimal solution which is
known for this benchmark test case. The three curves of the diagram show the
performance of a Genetic algorithm with no mutation, with a typical value of
5% mutation as well as a rather high mutation rate of 10%. For each of the three
curves the lower line stands for the best solution of the actual population and the
upper line shows the average fitness value of the population members. The results
with no mutation are extremely weak and the quality curve stagnates very soon
and far away from the global optimum. The best and average solution quality are

1 For more detailed information concerning HeuristicLab the interested reader is re-
ferred to http://www.heuristiclab.com/



268 M. Affenzeller, S. Wagner, and S. Winkler

  

Fig. 2. The effect of mutation for certain mutation rates (left diagram) and the distri-
bution of essential genetic information for a mutation rate of 5% (right diagram) both
in case of a standard GA for the ch130 benchmark TSP

the same and no further evolutionary process is possible - premature convergence
has occurred. As already stated before, mutation is a very essential feature of
standard GAs in order to avoid premature convergence. But also a rather high
mutation rate of 10% produces results which are not very satisfying and indeed
the best results are achieved with a mutation rate which is very typical for GA
applications - namely a mutation rate of 5%. Considering a standard benchmark
problem like the ch130 (a 130 city TSP taken from the TSPLib [9]) with one
single best solution allows to consider the edges of the shortest path as the
essential alleles whose preservation during the run can be observed. The following
figures indicate the spreading of essential alleles during the runs of the certain
algorithms. This is visualized by inserting bar charts which have to be considered
as snapshots after a certain number of iterations approximately corresponding
to the position in the figure. The higher a certain bar (130 bars for a 130-city
TSP) the higher the relative occurrence of the corresponding essential allele in
the population.

The right diagram of Figure 2 shows the distribution of essential alleles over
the iterations for a standard GA with a mutation rate of 5%. The interesting
thing is that some minor ratio of essential alleles is rapidly fixed in the population
and the majority of essential alleles which are still missing have disappeared in
the entire population. During the further run of the algorithm it is only mutation
which can reintroduce this essential genetic information. As it could be seen in
Figure 2, without mutation premature convergence would already have occurred
at this early state of evolutionary search. But with an appropriate mutation rate
(5% in this example) more and more essential alleles are discovered ending up
with quite a good solution. But there is still a gap to the global optimum caused
by that alleles which could not be recovered due to mutation. The next figures
will show how the new selection concept is able to close this gap and make the
algorithm much more independent of mutation.

So let us take a closer look at the distribution of essential genetic information
in the population when using the enhanced selection concepts. The left diagram
of Figure 3 shows the quality curve and the distribution of essential alleles for
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Fig. 3. The distribution of essential genetic information when using the enhanced se-
lection concept considering the ch130 benchmark TSP with 5% mutation (left diagram)
and with no mutation (right diagram)

a mutation rate of 5% (which was able to achieve the best results in case of a
standard GA).

When applying the GA with the new selection principle to the same bench-
mark test case one can see that the global optimal solution is detected in only
about 100 iterations. Nevertheless, the computational effort is comparable to the
standard GA as much more individuals have to be evaluated at each iteration
step due to the higher selection pressure. Considering the distribution of essen-
tial alleles we see a totally different situation. Almost no essential alleles get lost
and the ratio of essential alleles continuously increases in order to end up with a
final population that contains almost all pieces of essential genetic information
and therefore achieving a very good solution. This shows that the essential alleles
are preserved much more effectively and indicates that the influence of mutation
should be much less. But is this really the case? In order to answer this question,
let us consider the same example with the same settings - only without mutation.
And indeed the assumption holds and also without mutation the algorithm finds
a solution which is very close to the global optimum (see right diagram of Figure
3). The essential alleles interfuse the population more and more and almost all
of them are members of the final population. Reconsidering the standard GA
without mutation the algorithm was prematurely converging very soon with a
very bad total quality.

4.2 References to Recent Related Works

The basic concepts of the enhanced selection ideas as published in the present
paper have already emerged more than one year ago. As the actual focus (like also
stated in the present contribution) is to study the properties of the new selection
concepts systematically, the potential w.r.t. achievable advancements in global
solution quality were obvious immediately. Therefore, the main aim of the first
works in this area was to check the generality of the new algorithmic concepts by
applying them to various theoretically as well as practically relevant problems.
And indeed this worked out very well and it was possible to demonstrate similar
effects and achievements in global solution quality in various areas of application



270 M. Affenzeller, S. Wagner, and S. Winkler

under very different problem codifications with exactly that enhanced generic
selection techniques as being proposed in this paper.

While the last subsection considered only relatively small TSP instances in
order to illustrate some selected aspects, journal article [1] includes a detailed and
comprehensive empirical analysis also based on TSP instances of much higher
dimension. Furthermore, [1] gives a comprehensive solution analysis based on
several real valued n-dimensional test functions (like the n-dimensional Rosen-
brock, Rastrigin, Griewangk, Ackley, or Schwefel’s sine root function). Also here
it is possible to locate the global optimal solution in dimensions up to n = 2000
with exactly the same generic extensions of the selection model as being stated
here - only the crossover- and mutation-operators have been replaced with stan-
dard operators for real-valued encoding.

But also in practical applications like the Optimization of Production Plan-
ning in a Real-World Manufacturing Environment based on an extended formu-
lation of the Job-shop Scheduling Problem [2] a significant increase in solution
quality could be accomplished with the described methodology. Especially in
combination with Genetic Programming self-adaptive selection pressure steering
has already proven to be very powerful. In [13] and [14] we report first results
achieved in the context of nonlinear structure identification based on time-series
data of a diesel combustion engine. Concretely the aim of this project is the
development of models for the NOx emission. Already until now it has be-
come possible with a GP-based approach equipped with offspring selection to
identify models which are superior to the models achieved with conventional
GP-techniques and also superior to machine learning techniques which have also
been considered in earlier stages of this project. Very recently we have adapted
this GP-approach for the application on symbolic as well as logistic regression
problems. First results achieved on benchmark classification problems (taken
from the UCI machine learning repository) indicate a high potential also in
these areas of application.2

5 Conclusion and Future Perspectives

This paper discusses a new generic selection concept and points out its ability
to preserve essential genetic information more goal-oriented than standard con-
cepts. Possibly the most important feature of the newly introduced concepts is
that the achievable solution quality can be improved in a non-problem specific
manner so that it can be applied to all areas of application for which the theory
of GAs and GP provides suitable operators. Further aspects worth mentioning
concern the robustness and self-adaptiveness of the population genetics and ES
inspired measures: Selection pressure can be steered self-adaptively in a way
that the amount of selection pressure actually applied is that high that further

2 First results tables for the thyroid and Wiskonsin breast cancer data-sets are shown
on http://www.heuristiclab.com/results/regression.
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progress of evolutionary search can be achieved. Possible future research topics
in that area are certainly to open new areas of application also and especially
in GP related applications where the aspect of preservation of essential genetic
information is especially important as the disruptive properties of GP-operators
tend to add impurities into the genetic information for the ongoing search when
using standard parent selection models.
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Abstract. Despite its unrealistic independence assumption, the Naive Bayes clas-
sifier is remarkably successful in practice. In the Naive Bayes classifier, all vari-
ables are assumed to be nominal variables, it means that each variable has a finite
number of values. But in large databases, the variables often take continuous val-
ues or have a large number of numerical values. So many researchers discussed
the discretization (or partitioning) for domain of the continuous variables. In this
paper we generalize the Naive Bayes classifier to the situation in which the fuzzy
partitioning for the variable domains instead of discretization is taken. Therefore
each variable in the Fuzzy Naive Bayes classifier can take a linguistic value rep-
resented by a fuzzy set. One method for estimating the conditional probabilities
in the Fuzzy Naive Bayes classifier is proposed. This generalization can decrease
the complexity for learning optimal discretization, and increase the power for
dealing with imprecise data and the large databases. Some well-known classifi-
cation problems in machine learning field have been tested, the results show that
the Fuzzy Naive Bayes classifier is an effective tool to deal with classification
problem which has continuous variables.

1 Introduction

During the past several years, many techniques dealing with uncertain information have
attracted the attention of researchers and engineers. The uncertain information may in-
clude randomness, fuzziness. How to represent the uncertain information and how to
reason using uncertain information are the key problems of the artificial intelligence
research field. The uncertainty due to randomness can be dealed with by the theory
of probability (subjective or objective), Bayesian belief networks (BN) are the normal
knowledge representation for randomness. Because of its mathematics foundation, the
Bayesian belief network has been an important tool to reason on the uncertain situation.
For instance, it has been used in expert systems [6], classification systems [3] etc.. On
the other hand, the uncertainty due to the fuzziness can be dealt with by the theory of
fuzzy set, the theory of fuzzy set provides an appropriate framework to describe the
fuzziness of human knowledge. For instance, Fuzzy logic control, fuzzy classification,
fuzzy clustering, fuzzy intelligent decision have succeeded in many applications. These
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two theories can live side by side in providing tools for uncertainty analysis in com-
plex, real-world problems [1, 7, 8, 11, 12, 13, 14]. Many researchers have discussed this
cooperation, L.A. Zadeh firstly provided the concept of fuzzy event and its probability
[14]. The term “fuzzy Bayesian Inference” was introduced by [13] meaning the gener-
alization of Bayesian Statistics to fuzzy data, the more deep discussion about this was
presented in [12].

Bayesian belief networks are powerful tools for knowledge representation and in-
ference under uncertainty, they were not considered as classifiers until the discovery
that Naive Bayes, a very simple kind of Bayesian belief network that assumes the vari-
ables are independent given the classification node, are surprisingly effective. In Naive
Bayes, all variables are assumed to be nominal variables meaning each variables has
a finite number of values. But in practice, in the large databases many attributes often
have a large number of numerical values. In order to deal with the continuous variables,
many approaches in machine learning were proposed by discretizing them [2, 4]. But
this discretization or partitioning often causes the loss of the information. In this paper,
we use fuzzy partitioning for the domains of the continuous variables instead of the
discretization. So the Naive Bayes is generalized to the Fuzzy Naive Bayes in which
each variable takes the linguistic values represented by the fuzzy sets on the domain
of each variable. In the Fuzzy Naive Bayes, the computation and propagation of the
probabilities have no difference with the classic Naive Bayes. One method for comput-
ing the conditional probabilities in the Fuzzy Naive Bayes from the observed data is
proposed, some classification problems varying from several attributes and hundreds of
data points to more than thirty attributes and thousands of data points are used to test
the performance of the Fuzzy Naive Bayes classifier in this paper.

In what follows, we review the Bayesian belief network, and proceed to build our
Fuzzy Naive Bayes classifier. We introduce one method to compute the conditional
probabilities of each node in the Fuzzy Naive Bayes classifier and discuss its classifica-
tion process. Finally, this Fuzzy Naive Bayes classifier is tested by some classification
problems in machine learning field.

2 Bayesian Belief Network

A Bayesian belief network consists of a graphical structure that is augmented by a set of
probabilities. The graphical structure is a directed, acyclic graph in which nodes repre-
sent domain variables which have a finite number of possible values. Prior probabilities
are assigned to source nodes, and conditional probabilities are associated with arcs. In
particular, for each source node xi (i.e., a node without any incoming arcs), there is a
prior probability function P (xi); for each node xi with one or more direct predecessors
πi, there is a conditional probability function P (xi|πi). That probability functions are
represented in the form of explicit function tables called as the conditional probability
tables (CPT). A general Bayesian belief network is represented as (V,A, P ), where V
is the set of variables (i.e., vertices or nodes). A the set of arcs between variables, and
P the set of probabilities.

Bayesian belief network is capable of representing the probabilities over any dis-
crete sample space, such that the probability of any sample point in that space can be
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computed from the probabilities in the Bayesian belief network. The key feature of
Bayesian belief network is their explicit representation of the conditional independence
among events. A Bayesian belief network represents a full join-probability space over
the n event variables in the network, and it states that the join-probability P (x1, x2, . . . ,
xn) can be factorized into the multiplication of the conditional probabilities of the vari-
ables given their respective parents, i.e.,

P (x1, x2, . . . , xn) =
∏

i

P (xi|πi) (1)

Let θijk denote P (xi = j|πi = k), where j is a value of variable xi and k is a
combination of the values of the parents of xi. For convenience, we shall say that k is
a value of πi and call θijk a parameter pertaining to variable xi. And θ is the vector
of all parameters θijk. The parameter vector θ is to be estimated from a collection D
of data cases D1, D2, . . . , Dl that are independent given θ. Each data case is a set of
variable-value pairs. So the estimate θ∗ of θ can be obtained by setting [5]

θ∗ijk =
f(xi = j, πi = k)∑
j f(xi = j, πi = k)

for all i, j, and k. (2)

where f(xi = j, πi = k) stands for the number of data cases where xi = j and πi = k
in D.

Although an arc from a node x to a node y frequently is used to express that x cause
y, this interpretation of arcs in Bayesian belief networks is not the only one possible.
For example, y may be only correlated with x, but not caused by x. Thus, although
Bayesian belief networks are able to represent causal relationships, they are not re-
stricted to such causal interpretations. In this regard, Bayesian belief networks can be
viewed as a representation for probabilistic rule-based systems. Many researchers have
studied the structure and the parameters learning problems of Bayesian belief network
[9, 10], and its application [6].

When Bayesian belief network is applied to the classification problem, one of the
most effective classifier is the so-called Naive Bayesian classifier. When represented as
a Bayes network, it has the simple structure (V,A, P ) proposed in Fig. 1. This classifier
learns from observed data the conditional probability of each variable Xi given the class
label C. Classification is then done by applying Bayes rule to compute the probability
P (C|X1, . . . , Xn) and then predicting the class with the highest posterior probability.
This computation is feasible by making the strong assumption that the variables Xi are
conditionally independent given the value of the class C.

In Naive Bayes classifier, the discriminant function is the class posterior probability
function P (C|X1, . . . , Xn), the classifier selects the class with the maximum discrimi-
nant function given the feature X1, . . . , Xn. Applying the Bayes rule the class posterior
probability P (C|X1, . . . , Xn) is given

P (C|X1, . . . , Xn) =
P (X1, . . . , Xn|C)P (C)

P (X1, . . . , Xn)

=
∏

i P (Xi|C)P (C)
P (X1, . . . , Xn)

. (3)
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Fig. 1. The Naive Bayes classifier

Where P (X1, . . . , Xn) is identical to all classes, so the discriminant function of the
classifier is simplified as P (X1, . . . , Xn|C)P (C) which also is called as class-
conditional probability distribution.

In summary, Bayesian belief networks allow an explicit graphical representation
of the probabilistic conditional dependencies and independencies among variables that
may represent events, states, objects, propositions, or other entities. Generally, a
Bayesian belief network greatly reduces the number of probabilities that must be as-
sessed and stored (relative to the full join-probability space).

3 Fuzzy Naive Bayes Classifier

Handling the continuous variables is a key issue in machine leaning and pattern recog-
nition, in real databases, the variables often are continuous. So in order to use the Naive
Bayes classifier, one way is to discretize the domains of the variables. Here we partition
the domain of each continuous variable into fuzzy regions. Therefore the Naive Bayes
classifier is generalized to Fuzzy Naive Bayes classifier in which each variable is a lin-
guistic variable taking the linguistic values. All linguistic values defined as fuzzy sets
constructs a fuzzy partition of the domain of the continuous variable. It is clear that the
Naive Bayes classifier is a specification of the Fuzzy Naive Bayes classifier.

Given the observed data set, eq. (2) provides a method to estimate the conditional
probabilities of the Bayesian belief network. In the following we will consider the com-
putation of the conditional probabilities of each variable in the Fuzzy Naive Bayes
classifier.

In the Fuzzy Naive Bayes classifier, each variable takes the linguistic values which
each linguistic value associates with a membership function. Let {Ai

j : j = 1, . . . , ni}
is the fuzzy partition of the domain of the variable Xi, and {Ci : i = 1, . . . , m} is the
class label set of the class variable C. Therefore the observed data set D is partitioned
into m subsets Di, i = 1, 2, · · · ,m, in which each subset Di includes the data elements
having the form X = [X;Ci], and X is a n-dim vector [x1, x2, · · · , xn]. Here we
provide a method to estimate the conditional probability as follows:

P (Xi = Ai
j |C = Ck) =

∑
X∈Dk

Ai
j(xi)∑ni

j=1

∑
X∈Dk

Ai
j(xi)

, (4)
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where xi is the i-th component of the vector X ∈ Dk. It should be pointed out that eq.
4 is a direct generalization of eq. (2).

So we can use eq. (4) to compute the conditional probabilities in the Fuzzy Naive
Bayes classifier. The following is the construction process of Fuzzy Naive Bayes,

1. Input the observed data X = [x1, . . . , xn], for each xi, compute the member-
ship degree Ai

j(xi), j = 1, . . . , ni. Let Ai be the fuzzy set such that Ai(xi) =∨
j Ai

j(xi).
2. For each Ai, i = 1, . . . , n, use eq. (3) to compute the conditional probability

P (C = Ck|X1 = A1, . . . , Xn = An), k = 1, 2, . . . , m.
3. Output Cs as the class label of the data X in which P (C =Cs|X1 =A1, . . . , Xn =

An) =
∨

k P (C = Ck|X1 = A1, . . . , Xn = An).

The basic steps to construct a Fuzzy Naive Bayes classifier has been given. But
how to determine the fuzzy partitioning for the domains of the variables is still an open
problem. Because the Bayesian belief networks reflect the causal relationship of the
current node and its parents. Like the construction of fuzzy if-then rules, the knowledge
of the domain experts may be applied to partitioning the feature space. Of course the
adapted tuning for the fuzzy partitioning needs more research.

4 Experiment Study

In this section we present some classification problems we have work with. All of
database can be obtained in MLC++ datasets from UCI.

The first classification problem we have worked with is Iris Plants Database which
was created by R.A. Fisher. This is perhaps the best known database to be found in
the pattern recognition literature. Fisher’s paper is a classic in the field and is quoted
frequently nowadays. The data set contains 3 classes of 50 instances each, where each
class refers to a type of iris plant. The number of instances in the Iris Plants Database
is 150 (50 in each one of three classes), and the number of attributes is 4. Relevant
information about it may be seen in Table 1.

Table 1. The relevant information of Iris Plant Database

C: C1, Iris Setosa; C2, Iris Versicolour; C3, Iris Virginica
Attribute Type Description Min (cm) Max (cm) Mean (cm) SD (cm)

X1: Continuous Sepal Length 4.3 7.9 5.84 0.83
X2: Continuous Sepal Width 2.0 4.4 3.05 0.43
X3: Continuous petal Length 1.0 6.9 3.76 1.76
X4: Continuous petal Width 0.1 2.5 1.20 0.76

The first attribute indicates sepal length, the second sepal width, the third petal
length and the latter indicates petal width. All the attributes are measured in centimeters
(cm). The class may be Iris Setosa, Iris Versicolor or Iris virginica. There are values for
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all the attributes in the Iris Plants Database. In the tests, we use 100 instance for com-
puting the conditional probabilities of the Fuzzy Naive Bayes classifier, in which there
are 35 instances labeled as Iris Setosa, 33 instances labled as Iris Versicolour and 32
instances labeled as Iris Virginica, and 50 instances (15 instances labeled as Iris Setosa,
17 instances labeled as Iris Versicolour and 18 instance labeled as Iris Virginica ) for
testing the Fuzzy Naive Bayes classifier.

We assume that the domain of the i-th feature is divided into ni (here ni = 3) fuzzy
sets labeled as Ai

1, A
i
2, · · · , Ai

ni
for i = 1, 2, 3, 4. Though any type of membership

functions (e.g., the triangle-shaped, trapezoid-shaped and bell-shaped) can be used for
fuzzy sets, we employ the gauss-shaped fuzzy sets Ai

j , with the following membership
function:

Ai
j(xi) = exp

(xi − ai
j)

2

−2(σi
j)2

. (5)

So the membership function is determined by two parameters (a, σ).
The classification results of the Fuzzy Naive Bayes classifier are compared with the

given classes, and discrepancies arising from mismatch between the given classes and
the achieved classes are reported in Table 2. For Iris Plant database, the discrepancies
between the actual classes and the achieved classes is very few (a total of 7 in 100 data
points for training and a total of 5 in 50 data points for testing).

Table 2. Classification of Iris Plant Database

Train (100 points) Test (50 points)
Success rate 0.93 Success rate 0.90

Achieved class label Achieved class label
C1 C2 C3 C1 C2 C3

Actual C1 35 15
Class C2 33 17
Label C3 7 25 5 13

The second classification problem we have worked with is Pima Indians Diabetes
Database which was created by Vincent Sigillito of Johns Hopking University. The
data set contains 2 classes, Diabetes and No-Diabetes. The number of attributes is 8,
all numeric-valued, the relevant information of Pima Indians Diabetes Database is in
table 3. The total number of instances is 768. we use 512 instances (345 No-Diabetes;
167 Diabetes) to construct the Fuzzy Naive Bayes classifier, and 256 instances (155
No-Diabetes; 101 Diabetes) to test the performance of the final Fuzzy Naive Bayes
classifier.

Many users have used different algorithms to test this classification problem, in the
website of MLC++ their performances have been listed, see Table 4.

In our study we still employ gauss-shaped membership function for the fuzzy sets.
And the fuzzy partitioning for the domian of each variable is an evenly fuzzy partition-
ing. In Table 5, we list the experimental results for different fuzzy partitions. Comparing
the Table 4 and Table 5 shows that the performance of our Fuzzy Naive Bayes classifier
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Table 3. Relevant information of Pima Indians Diabetes Database

C: C1, No-Diabetes; C2, Diabetes
Attribute Type Name Min Max Mean SD

X1 Continuous Number of times pregnant 0 17 3.8 3.4

X2 Continuous

Plasma glucose con-
centration at 2 hours in
an oral glucose toler-
ance test

0 199 120.9 32.0

X3 Continuous Diastolic blood pressure 0 122 69.1 19.4
X4 Continuous Triceps skin fold thickness 0 99 20.5 16.0
X5 Continuous 2-Hour serum insulin 0 846 79.8 115.2
X6 Continuous Body mass index 0 67.1 32.0 7.9
X7 Continuous Diabetes pedigree function 0.084 2.42 0.5 0.3
X8 Continuous Age (years) 21 81 33.2 11.8

Table 4. List of the different algorithms applied to Pima Indians Diabetes Database

Success Rate Time Success Rate Time
Algorithm Train Test Train Test Algorithm Train Test Train Test
LogDisc 78.09 77.7 31 7 C4.5 86.92 73.0 12 1
Dipol92 ? 77.6 IndCart 92.14 72.9 18 17
Discrim 78.01 77.5 27.3 6 BayTree ? 72.9
Smart 82.27 76.8 314 ? LVQ ? 72.8
Radial ? 75.7 Kohonen ? 72.7
Itrule ? 75.5 Ac2 100 72.4 648 29

BackProp ? 75.2 NewId 100 71.1 10 10
Cal5 76.8 75.0 40 1 Cn2 98.98 71.1 38 3
Cart 77.31 74.5 61 2 Alloc80 71.24 69.9 115 ?

Castle 73.97 74.2 29 4 KNN 100 67.6 1 2
QuaDisc 76.28 73.8 24 6 Default ? 65.0

Bayes 76.07 73.8 2 1

Table 5. Classification results of the Fuzzy Naive Bayes classifier applied to Pima Indians Dia-
betes Database

The number of fuzzy sets of each variable
2 3 4 5 6 7

Success Train 0.6816
(349/512)

0.7402
(379/512)

0.7715
(395/512)

0.7559
(387/512)

0.7617
(390/512)

0.7910
(405/512)

Rate Test 0.6133
(157/256)

0.6758
(173/256)

0.7148
(183/256)

0.7266
(186/256)

0.7148
(183/256)

0.6953
(178/256)

is satisfactory and the improvement might be achieved by tuning the fuzzy partition of
each variable.

The third classification problem we have worked with is a Satellite Image Database.
This database consists of the multi-spectral values of pixels in 3×3 neighborhoods in a
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satellite image, and the classification associated with the central pixel in each neighbor-
hood. The aim is to predict this classification, given the multi-spectral values. The orig-
inal database was generated from Landsat Multi-Spectral Scanner image data, Satellite
Image Database was generated taking a small section (82 rows and 100 columns) from
the original data. One frame of Landsat imagery consists of four digital images of the
same scene in different spectral bands. Two of these are in the visible region (corre-
sponding approximately to green and red regions of the visible spectrum) and two are
in the (near) infra-red. Each pixel is a 8-bit binary word, with 0 corresponding to black
and 255 to white. The spatial resolution of a pixel is about 80m × 80m. Each image
contains 2340 × 3380 such pixels. Satellite Image Database is a (tiny) sub-area of a
scene, consisting of 82 × 100 pixels. Each line of data corresponds to a 3 × 3 square
neighborhood of pixels completely contained within the 82 × 100 sub-area. Each line
contains the pixel values in the four spectral bands of each of the 9 pixels in the 3 × 3
neighborhood and a number indicating the classification label of the central pixel. Satel-
lite Image Database was divided into two sets, one is training set containing 4435 data
points, the other is testing set containing 2000 data points. There are 36 attributes (=
4 spectral bands ×9 pixels in neighborhood), each attribute can take a large number
of possible values ranging from 0 to 255, and the decision class number is 6, Table 6
describes some relevant information of the classes.

Table 6. Class information of Satellite Image Database

Class Description Train Test
C1 red soil 1072 (24.17%) 461 (23.05%)
C2 cotton crop 479 (10.80%) 224 (11.20%)
C3 grey soil 961 (21.67%) 397 (19.85%)
C4 damp grey soil 415 (9.36%) 211 (10.55%)
C5 soil with vegetation stubble 470 (10.60%) 237 (11.85%)
C6 7 very damp grey soil 1038(23.40%) 470 (23.50%)

In each line of data the four spectral values for the top-left pixel are given first
followed by the four spectral values for the top-middle pixel and then those for the
top-right pixel, and so on with the pixels read out in sequence left-to-right and top-
to-bottom. Thus, the four spectral values for the central pixel are given by attributes
17,18,19 and 20.

In the website of MLC++ the test results of many other machine learning methods
applied to Satellite Image Database have been given, see Table 7.

Like the classification problem Pima Indians Diabetes Database we have worked
with, in the design of the Fuzzy Naive Bayes classifier, the fuzzy partition of each
variable is still an evenly fuzzy partition and each fuzzy set is gauss-shaped. we have
achieved different performances in different fuzzy partitions, in our study when the
number of fuzzy sets of each variable is 5 the best performance is achieved, see Table 8.
In this situation our test results are close to the algorithm Koholen, but the Fuzzy Naive
Baye classifier needn’t the burden of iterative learning process. The improvement might
be achieved by studying the distribution of the fuzzy sets.
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Table 7. Test results of other machine learning methods applied to Satellite Image Database

Success Rate Time Success Rate Time
Algorithm Train Test Train Test Algorithm Train Test Train Test

KNN 91.1 90.6 2105 944 Cal5 87.8 84.9 1345 13
LVQ ? 89.5 QuaDisc 89.4 84.5 276 93

Dipol92 ? 88.9 Ac2 ? 84.3 8244 17403
Radial 88.9 87.9 723 74 Smart 87.7 84.1 83068 20

Alloc80 96.4 86.8 63840 28757 LogDisc 88.1 83.7 4414 41
IndCart 98.9 86.2 2109 9 Cascade ? 83.7

Cart 92.1 86.2 348 14 Discrim 85.1 82.9 68 12
BackProp 88.8 86.1 54371 39 Kohonen 89.9 82.1 12627 129
BayTree ? 85.3 Castle ? 80.6
NewId 93.3 85.0 296 53 Bayes 71.3 71.3 56 12

Cn2 98.6 85.0 1718 16 Default 24.0 24.0
C4.5 95.7 85.0 449 11

Table 8. Test results of the Fuzzy Naive Bayes classifier applied to Satellite Image Database

The number of fuzzy sets of each variable
3 4 5 6

Success Train 0.6207
(2753/4435)

0.7202
(3194/4435)

0.8059
(3574/4435)

0.7869
(3490/4435)

Rate Test 0.6085
(1217/2000)

0.7165
(1433/2000)

0.8090
(1618/2000)

0.7770
(1554/2000)

In our three experimental studies, the Fuzzy Naive Bayes classifier has been ap-
plied to the simple classification problem having a few attributes and hundreds of data
points, the medium classification and the large classification having more attributes and
thousands of data points , the test results manifest that the Fuzzy Naive Bayes classi-
fier can adapt to the different kinds of classification problems. And the results show
that the classifier can be improved. One improvement might consist of the studying the
distribution of the fuzzy sets for the domain of each variable.

5 Conclusion

In order to deal with the large databases in which many attributes have a large num-
ber of numeric values or are continuous variables, we provide the Fuzzy Naive Bayes
classifier which uses the fuzzy partition of the each continuous variable instead of the
discretization. Based on this fuzzy partition, we propose a method to estimate the con-
ditional probabilities in Fuzzy Naive Bayes classifier.

Several testing have been done and the results have been studied in-depth using
three data bases, the Iris Plants Database, the Pima Indians Diabetes Database and
the Satellite Image Database. The number of the attribute varies from 4 to more than
30, and number of data points varies from hundreds to thousands. The test results show
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that the Fuzzy Naive Bayes classifier is a very effective classifier. One possible way
to improve the performance of Fuzzy Naive Bayes classifer is taking into account the
distribution of the fuzzy sets of each variable.
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Abstract. This paper provides a first step towards a methodology that
allows the search for near-optimal representations in classification prob-
lems by combining feature transformations from an initial family of basis
functions. The original representation for the problem data may not be
the most appropriate, and therefore it might be necessary to search for a
new representation space that is closer to the structure of the problem to
be solved. The outcome of this search is critical for the successful solution
of the problem. For instance, if the objective function has certain global
statistical properties, such as periodicity, it will be hard for methods
based on local pattern information to capture the underlying structure
and, hence, afford generalization capabilities. Conversely, once this op-
timal representation is found, most of the problems may be solved by a
linear method. Hence, the key is to find the proper representation. As a
proof of concept we present a particular problem where the class distri-
butions have a very intricate overlap on the space of original attributes.
For this problem, the proposed algorithm finds a representation based
on the trigonometric basis that provides a solution where some of the
classical learning methods, e.g. multilayer perceptrons and decision trees,
fail. The methodology is composed by a discrete search within the space
of basis functions and a linear mapping performed by a Fisher discrim-
inant. We play special emphasis on the first part. Finding the optimal
combination of basis functions is a difficult problem because of its non-
gradient nature and the large number of possible combinations. We rely
on the global search capabilities of a genetic algorithm to scan the space
of function compositions.

1 Introduction

Classical methods for pattern classification are based on the existence of statisti-
cal differences among the distributions of the different classes. The best possible
situation is perfect knowledge of these distributions. In such a case, Bayes classifi-
cation rule gives the recipe to obtain the best possible solution. In real problems,
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however, class distributions are rarely available because the number of patterns
is generally small compared with the dimensionality of the feature space. To
tackle this problem many techniques of density estimation have been developed,
both parametric and non-parametric [2]. When density estimation fails, we have
a variety of supervised learning algorithms, such as neural networks [1] or sup-
port vector machines [9], that try to find a non-linear projection of the original
attribute space on to a new space where a simple linear discriminant is able to
find an acceptable solution.

Let us assume a particular classification problem in which, when looking at
the original attribute space, we observe an almost complete overlap among the
class distributions. Following the Bayes rule, we see that for any point in this
attribute space, the probabilities of belonging to any of the classes are all equal.
Must we conclude that there is no solution to the problem better than choosing
the class randomly?

When dealing with a problem like this one, a supervised learning algorithm,
like a backpropagation neural network, will try to exploit the local differences
that exist in the examples of each class, assuming that these differences are gen-
eralizable and are not due to noise. This usually leads to very complex solutions,
in general difficult to interpret, and that eventually may not be able to general-
ize. This kind of algorithms have the additional problem of local minima, derived
from their intrinsic non-linearity. Functional Link Networks (FLNs) [6] avoid this
problem by using a simple linear projection and relaying the non-linearity to the
operation of input units. Using polynomials as input units, these networks can,
at least theoretically, approximate almost any function. Sierra et al. [8] have
shown that the use of FLNs, combined with a genetic algorithm that evolves
the polynomial terms, can produce very compact, effective and interpretable
architectures.

Following their work, we hypothesize that if there exists a function that dis-
criminates among the different classes for a given classification problem, there
must exist a suitable basis in which this function has a simple and compact
expression. So solving such a problem can be reduced to finding the most appro-
priate basis or representation for the input data (with respect to the classification
target). Once this representation is found, a linear discriminant will suffice to
find a simple and compact solution. We propose an expansion of the work in [8]
that incorporates other bases apart from polynomials. We use a genetic algo-
rithm to perform both variable selection and search in the transformation space,
and a Fisher discriminant that performs the final linear projection. We show
that this approach is able to solve problems where other methods fail to find a
solution, even when the overlap is so large that there are no apparent statistical
differences among the classes. This overlap may be due simply to the fact that
the original representation of data is not well suited to the problem. Actually,
it is well known that many classification problems are solved only after the ap-
plication of some “intelligent” transformations provided by a domain “expert”.
Here we want to go a step closer into the automatic selection of these intelligent
transformations, by allowing the algorithm to search for the optimal basis.
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The paper is organized as follows. In section 2 we present, as a proof of con-
cept, a classification problem with a high degree of overlap between classes, whose
solution appears to be quite difficult for any standard classification method. Sec-
tion 3 summarizes the performance of different classical methods on this problem.
Section 4 shows that the selection of an appropriate representation for the input
data makes the solution much simpler. In section 5 we propose a general method
that searches the space of transformations for near-optimal representations. Fi-
nally, section 6 contains the conclusions and discussion.

2 A Particular Problem

Let us consider the classification problem of figure 1. It consists of two classes
(A and B) in a two-dimensional space represented by the variables x and y.
There are 1000 patterns of class A (circles in the figure) and 1000 patterns of
class B (crosses in the figure). At first sight one would say that this classification
problem is impossible to solve, since the two classes apparently follow the same
probability distribution, a bidimensional uniform distribution in the interval
[0 ≤ x ≤ 100, 0 ≤ y ≤ 100]. In fact, statistical tests for mean and variance
corroborate this hypothesis.

The next section shows the results obtained by different classification meth-
ods when trying to solve this problem. None of the tested strategies achieves a
successful result. The difficulty they are confronting is due to the high overlap
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Fig. 1. Input patterns for a problem with two classes and two attributes x and y. The
problem data consist of 1000 patterns of class A (circles) and 1000 patterns of class
B (crosses). Apparently the two classes follow the same (uniform) distribution in the
considered interval, and classical methods will have great difficulties to deal with this
problem
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between the two classes. Note that for an absolute class overlap, even the best
(Bayes) class estimator fails. But it may happen that below this apparent class
mixing there is a hidden structure that these methods are not able to discover
when just using the original input space. It is clear that, if we trust standard
methods, we must conclude there is no solution. But we could be quite far from
the truth.

3 When Classical Methods Fail

When traditional classification methods were applied to the problem of section
2, no solutions with acceptable error rates were obtained. Three different meth-
ods have been tried: a multilayer perceptron trained with backpropagation, a
decision tree trained with the C4.5 algorithm, and an evolutionary FLN with
the polynomial basis. The results are summarized in table 1, which shows the
best error rates obtained with each method. In no case we observed results bet-
ter than approximately a 47% error on the test set. That is, none of the tested
methods performs much better than simply selecting the classes randomly.

Table 1. Comparison of performances of various classification methods on the problem
of section 2

Algorithm Train Error % Test Error %

Backpropagation 50.2 52.7

C4.5 48.7 49.8

EFLN 45.7 46.8

The backpropagation algorithm was tested using networks of one single hid-
den layer, with different number of hidden units (ranging from 3 to 10) with
a sigmoidal activation function. Different values for the learning rate between
0.01 and 0.3 were tried. For the decision tree, we used Quinlan’s C4.5 algorithm
[7] with probabilistic thresholds for continuous attributes, windowing, a gain ra-
tio criterion to select tests and an iterative mode with ten trials. Finally, the
evolutionary FLN was trained as described in [8], with polynomials of up to
degree 3.

4 Does a Solution Exist?

Let us now analyze the example problem in depth. In table 2 some examples
of class A and class B patterns are shown. A closer study of the data in the
table may reveal a relation between each pattern and its class. For all class A
patterns the integer parts of x and y are either both odd or both even. However,
for class B patterns there is always one odd and one even integer part. The class
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Table 2. Some example of patterns from both classes. Can you find the relation be-
tween each pattern and its class?

Class A Class B

x y x y

82.76 48.55 91.94 12.50
13.11 87.86 23.04 82.04
68.82 26.78 4.28 65.18
1.33 37.82 33.73 70.57
22.27 30.63 14.97 5.63
17.16 63.33 82.12 97.40
41.69 69.59 10.93 87.28
67.94 3.92 94.11 29.86
82.76 48.55 91.94 12.50

distribution is in fact, although we could not observe it from figure 1, like a
chess board in which class A patterns occupy black squares and class B patterns
occupy white ones. This is obvious in figure 2 (left), where we zoom in the area
[20 ≤ x ≤ 30, 20 ≤ y ≤ 30] and plot reference lines for ease of interpretation.

Hence, it is clear that there exists a solution to the problem. Neverthe-
less, standard methods fail to find it since they are not expressing the prob-
lem in an appropriate form (basis) to solve it. In figure 2 (right) we show one
possible transformation that is well suited to the present problem. Instead of
using the original attributes x and y, we used the transformations sin(πx)
and sin(πy). We can see that in this new basis the problem is much easier
to solve, and none of the methods considered in the previous section would
have any difficulties to find the solution. The problem we face now is how
to discover the appropriate basis. In the next section we explore a possible
method.
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Fig. 2. Left. Zoom in of the region [20 ≤ x ≤ 30, 20 ≤ y ≤ 30] of figure 1. Right. Rep-
resentation of the problem data using the transformed attributes sin(πx) and sin(πy)
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5 Proposed Approach

Our approach follows on the work developed by [8] with the EFLN algorithm.
In this regard our methodology involves transformations of the input space vari-
ables searching for a better approximation of the target function. These new
transformed variables define the input to a linear classification method, which
in turn will provide the quality measure over the selected transformation. These
new sets of input space variables are evolved using a standard genetic algorithm
(GA) [5], which will select the best subsets of transformed variables by using the
linear classifier error rate as the fitness criterion. Consequently our algorithm
can be viewed as a wrapper method [3].

There are two main differences between the EFLN method and the algorithm
presented here. First, we do not limit the transformations to the polynomial ba-
sis, but we expand the representation capabilities by adding the trigonometric
basis. Second, the linear projection is performed by a Fisher discriminant, instead
of a linear neural network. The proposed algorithm includes feature construction
as well as feature selection. For the first task, it combines different bases of trans-
formation (e.g. polynomial and trigonometric). Feature selection is performed by
the application of the GA. All the process is schematized in figure 3.

The algorithm is able to generate a rich set of new features through the
generator function

F (x1, x2, ..., xn) =
n∏

i=1

xai
i Ti(biπxi) (1)

where the xi represent the original input variables, ai and bi are integer coeffi-
cients, and Ti is a trigonometric function (a sine or a cosine). The coefficients
ai are the exponents applied to the original variables to get polynomial terms,
whilst the coefficients bi deal with trigonometric terms. This generator func-
tion can provide either pure polynomial or trigonometric terms, or combinations
of both.

As previously mentioned, a genetic algorithm is used for feature selection
since an exhaustive search over the new input spaces would be computationally

TRANSFORMATION SELECTION
ATTRIBUTE AND

TRANSFORMATION
CLASSIFICATION

METHOD

GENETIC

ALGORITHM
FISHER

Fig. 3. Schematics of the overall methodology
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too costly and would not scale properly on the number of input variables. The
genetic operators for mutation and crossover are included from the standard
library [5], the mutation probability is set to 15%, and elitism is selected to
save the best individuals from each evolved population. The initial population is
randomly generated. We have selected the most general GA options, so that the
influence of the GA on the overall algorithm performance will not be a decisive
factor. The coding scheme for every gene is based on the generator function
described above. The aforementioned coefficients ai and bi are included in the
gene, as well as n additional bit variables, ti, which determine the kind (sine or
cosine) of trigonometric function employed on the new feature.

Each chromosome has a variable number of genes, which generate the new
input variables for the Fisher discriminant. Then the Fisher projection is per-
formed, and the classification error on the training and validation sets are com-
puted. These errors define the fitness of the chromosome.

An schematic overview of the algorithm follows:

1. Initialize the first population of chromosomes randomly, and set other values
for the GA such as the number of iterations or the mutation probability.

2. For each evolution iteration:
(a) For each chromosome:

i. Generate new features based on the generator function and the orig-
inal attributes.

ii. Evaluate each chromosome to get the fitness value using the Fisher
Linear Discriminant classification error on the training and valida-
tion data sets.

(b) Select the lowest error chromosomes for the next iteration.
(c) Generate a new population applying genetic operators and the chromo-

somes selected in (b).
3. Evaluate the most accurate chromosome on the test data set.

Finally, we applied this algorithm to the problem described in Section 2.
Different trials converged fastly (in no more than 50 iterations) to classifica-
tion errors close to 0% in test. This implies that the algorithm is discovering
the intrinsic trigonometric nature of the problem. As an example, the following
chromosome was obtained with a 0.9% error:



xy sin(2πx) sin(2πy)
xy sin(πx) sin(πy)

0
sin(πx) sin(πy)

xy sin(πx) sin(πy)
x cos(2πx)

xy sin(2πx) sin(2πy)




with the resulting Fisher projection given by the vector:(
0 0 0 −9.5 0 0 0

)
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Fig. 4. Plot of sin(πx)sin(πy) vs x for the patterns of the problem of section 2. The
final transformation discovered by the proposed algorithm allows for a linear separation
of the two classes

So the final transformation reached by the algorithm is −9.5sin(πx)sin(πy).
Note that the Fisher projection is ignoring all the terms in the chromosome
except the fourth. As shown in figure 4, this transformation allows for a linear
separation of the two classes.

6 Conclusions

This paper presents a proof of concept for the construction of near-optimal
problem representations in classification problems, based on the combination
of functions selected from an initial family of transformations. The selection of
an appropriate transformation allows the solution of complex nonlinear prob-
lems by a simple linear discriminant in the newly transformed space of at-
tributes.

Work on progress includes the introduction of a more extensive family of
basis functions that will allow for the construction of a wider repertoire of prob-
lem representations. Additionally, mechanisms to control the combinatorial ex-
plosion in the space of representations and the complexity of solutions will be
analyzed.

Additional advantages of the proposed method are that a closer, more com-
pact problem representation usually allows for easier model interpretation [8],
and, hence, a deeper understanding of the structure and mechanisms underlay-
ing the problem under study. Related work on the extraction of hidden causes
[4], which provide the generative alphabet, will be farther explored.
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Abstract. Grammar-based Classifier System (GCS) is a new version
of Learning Classifier Systems in which classifiers are represented by
context-free grammar in Chomsky Normal Form (CNF). Discovering
component of the GCS and fitness function were modified and applied for
inferring a toy-grammar, a tiny natural language grammar expressed in
CNF. The results obtained proved that proposed rule’s fertility improves
performance of the GCS considerably.

1 Introduction

The problem of learning (inferring) context-free languages (CFLS’s) is worth
considering for both practical and theoretical reasons. Practical applications in-
clude pattern recognition and speech recognition. From a theoretical standpoint,
the problem poses an interesting challenge in that, there are serious limitations
to learning them. Finally, successful language learning algorithms model how
humans acquire language.

There are very strong negative results for the learnability of context-free
grammar (CFG). The main theorems are that it is impossible to evolve suitable
grammar (each of the four classes of languages in the Chomsky hierarchy) only
from positive examples [8], and that even the ability to ask equivalence queries
does not guarantee exact identification of CFL in polynomial time [2]. Effec-
tive algorithms exist only for regular languages, thus construction of algorithms
that learn context-free grammar is critical and still open problem of grammar
induction [9].

The approaches taken have been to provide learning algorithms with more
helpful information, such as negative examples or structural information; to for-
mulate alternative representation of CFG’s; to restrict attention to subclasses
of CFL’s that do not contain all finite languages; and to use Bayesian methods
[19]. Grammar induction can be considered as a difficult optimization task. Evo-
lutionary approaches are probabilistic search techniques especially [1] suited for
search and optimization problems where the problem space is large, complex and
contains possible difficulties like high dimensionality, discountinuity and noise.

Many researchers have attacked the problem of grammar induction by using
evolutionary methods to evolve (stochastic) CFG or equivalent pushdown au-

J. Mira and J.R. Álvarez (Eds.): IWINAC 2005, LNCS 3562, pp. 300–309, 2005.
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tomata [28], [27], [13], [7], [21], [17], [20], [14], [23], [15], [16], [24], but mostly
for artificial languages like brackets, and palindromes. The survey of the non-
evolutionary approaches for context-free grammatical inference one can find
in [19].

In this paper we examine CFL inference using Grammar-based Classifier
System (GCS) that take texts as input, where a text is a sequence of strings
over the same alphabet as the CFL’s being learned (a text contains both strings
in and not in the target language). GCS [25] is a new model of Learning Classifier
System (LCS) which represents the knowledge about solved problem in Chomsky
Normal Form productions. As Wyard already pointed out [27], the approach in
which the population consists of rules instead of complete grammars (employed
successfully in LCS), might prove to be useful in grammatical inference. In such
an algorithm, a population rule’s fitness is determined by scoring its ability to
correctly analyze the examples in conjunction with the other rules of population.
A advantage of this approach is that in a population of rules the value of different
grammar rules is evaluated only once, as opposed to a population of grammars,
in which a single rule might appear in many different grammars.

In spite of intensive research into classifier systems in recent years [18] there
is still slight number of attempts at evolving grammars using LCS. Bianchi in
his work [4] revealed, on the basis of experiments with bracket grammars, palin-
dromes and toy-grammar, higher efficiency of classifier system in comparison
with evolutionary approach. Cyre [6] inducted a grammar for subset of natural
language using LCS but comparison to his results is hard since usage of cor-
pora protected by trademarks (DMA driver’s American patents). GCS tries to
fill the gap also bringing grammar induction issues up. As was shown in [25],
GCS achieves better results than Bianchi’s system with reference to artificial
grammars. GCS has been tested on the natural language corpora as well, and it
provided comparable results to the pure genetic induction approach proposed in
[3], but in a significantly shorter time.

The paper improves the results presented in [25] by modification the discovery
component of GCS and fitness function, and investigates some characteristics.
All experiments were conducted to infer so called toy-grammar, a small natural
language grammar expressed as CFG.

Architecture of learning classifier system is presented in second paragraph.
Third section contains description of GCS preceded by short introduction to
context-free grammars. Fourth paragraph shows new ideas incorporated in GCS’s
model, and fifth paragraph some selected experimental results, whereas sixth
section is a short summary.

2 Learning Classifier System

Learning Classifier Systems proposed by J. Holland [10] exemplify the promising
model from among many methods and algorithms of machine learning [5], both
when we are talking about its simplicity, flexibility and efficiency.
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LCS learns by interacting with an environment from which it receives feed-
back in the form of numerical reward. Learning is achieved by trying to maximize
the amount of reward received. There are many models of LCS and many ways
of defining what a Learning Classifier System is. All LCS models, more or less,
comprise four main components:

1. A finite population of condition-action rules (classifiers), that represent the
current knowledge of system;

2. The performance component, which governs the interaction with the envi-
ronment;

3. The reinforcement component (called credit assignment component), which
distributes the reward received from the environment to the classifiers ac-
countable for the rewards obtained;

4. The discovery component responsible for discovery better rules and improv-
ing existing ones through a genetic algorithm.

Classifiers have two associated measures: the prediction and the fitness. Predic-
tion estimates the classifier utility in terms of the amount of reward that the
system will receive if the classifier is used. Fitness estimates the quality of the
information about the problem that the classifier conveys, and it is exploited
by the discovery component to guided evolution. A high fitness means that the
classifier conveys good information about the problem and therefore it should
be reproduced more trough the genetic algorithm. A low fitness means that the
classifier conveys little or no good information about the problem and therefore
should reproduce less.

On each discrete time step the LCS receives as input the current state of the
environment and builds a match set containing the classifiers in the population
whose condition matches the current state. Then, the system evaluates the util-
ity of the actions appearing in the match set; an action is selected from those
in the match set according to certain criterion, and sent to the environment
to be performed. Depending on the current state and on the consequences of
action, the system eventually receives a reward. The reinforcement component
distributes reward among the classifiers accountable of the incoming rewards.
This can be either implemented with an algorithm specifically designed for the
Learning Classifier Systems (e.g. bucket brigade algorithm [11] or with an algo-
rithm inspired by traditional reinforcement learning methods (e.g. the modifi-
cation of Q-learning [26]). On a regular basis the discovery component (genetic
algorithm) randomly selects, with the probability proportional to their fitness,
two classifiers from the population. It applies crossover and mutation generating
two new classifiers.

3 Grammar-Based Classifier System

GCS operates similar to the classic LCS systems but differs from them in (i) rep-
resentation of classifiers population, (ii) scheme of classifiers’ matching to the
environmental state, (iii) methods of exploring new classifiers.
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3.1 Representation

Primary goal, the GCS was developed for, was natural language grammar in-
ference, expressed in context-free form. As a result the population of classifiers
consists of context-free grammar rules. A context-free grammar is usually sum-
marized as:

G = (VN , VT , P, S)

where:
P productions are in the form of A → a and A ∈ VN and α ∈ (VT ∪ VN )∗,
S is a starting symbol,
VN is a set of nonterminals,
VT is a set of terminals.
System evolves only one grammar according to the so-called Michigan approach.
In this approach each individual classifier - or grammar rule in GCS - is subject
of the genetic algorithm’s operations. All classifiers (rules) form a population
of evolving individuals. In each cycle a fitness calculating algorithm evaluates a
value (an adaptation) of each classifier and a discovery component operates only
on a single classifier.

3.2 Matching

Automatic learning context-free grammar is realized with so-called grammati-
cal inference from text [8]. According to this technique system learns using a
training set that in this case consists of sentences both syntactically correct and
incorrect. Grammar which accepts correct sentences and rejects incorrect and is
able to classify unseen so far ones from a test set is an anticipated result. Cocke-
Younger-Kasami (CYK) parser, which operates in Θ(n3) time [29], is used to
parse sentences from the sets. It uses context-free grammar in Chomsky Normal
Form [12].

Chomsky Normal Form (CNF) allows only production rules in the form of
A → a or A → BC, where A,B,C ∈ VN , a ∈ VT . This is not a limitation
actually because every context-free grammar can be transformed into equiva-
lent CNF.

Environment of classifier system is substituted by an array of CYK parser.
The array of size m × n, where m represents number of rows and n represents
length of considered sentence, stores complete history of sentence’s parsing. If
there is a nonterminal symbol in cell [i, j] then this symbol derives a part of
sequence beginning from position i and j-length. If the parsing ends with start-
ing symbol S in cell [m, 1] it means that considered grammar is able to derive
whole sentence. In every single step parser a) generates every possible right
side of the rule that matches current state of parsing, b) matches the right
sides to the available production rules, c) inserts left side of every rule that
matches into the appropriate cell in an array. If there is more then one rule in
a cell it means that there are many possible derivation trees for this (part) of
sentence.
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A value of adaptation (fitness) is assigned for each rule as soon as parsing of
every sentence from a set is finished. The fitness value is expressed as:

fc =




wp · Up

wn · Un + wp · Up
for UN + UP �= 0

f0 for UN + UP = 0
(1)

where:
UP – number of uses of rule while parsing correct sentence,
UN – number of uses of rule while parsing incorrect sentence,
f0 – fitness of classifier that wasn’t used in parsing,
wp, wn – coefficients (commonly used settings are 1 and 2).
Fitness value is used by genetic algorithm while searching for new classifiers.

The following function fG is applied to evaluate fitness of each grammar.
In the equation, PS is the positive set of sentences, NS is the negative set of
sentences, P is the number of positive sentences parsed by grammar and N is
the number of negative strings parsed.

fG =
P + N

|PS + PN | · 100% (2)

3.3 Discovery Component

GCS uses two techniques that explore space of all possible classifiers - just like
many other classifiers systems. First of them is genetic algorithm and the second
is covering.

Genetic algorithm in GCS works on a population of classifiers like in other CS
but because of the different representation it operates only on production rules
in form of A → BC. System uses roulette-wheel or random selection (chosen in
the options), classic crossover and mutation, and crowding technique in order
to keep diversity in population [1]. Genetic operators are launched with given
probability once analyzing of the train set ends.

Covering works regardless of genetic algorithm and during trains set analysis.
It adds productions that allow continuing of parsing in the current state of the
system. In GCS there are following sorts of covering:

1. terminal covering: a production rule in the form of A → a is created when
system finds unknown (new) terminal symbol while parsing,

2. one-length covering: a production rule in the form of S → a is created for
one-length, correct sentences,

3. two-length covering: a production rule in the form of S → AB is created if
productions A → a and B → b exist in the population and there is two-length
correct sentence,

4. full-covering: a production rule in the form of S → AB is created if symbols
A and B can be derived and the last cell in the CYK array is considered and
there is a correct sentence currently parsed,

5. aggressive-covering: a production rule in the form of C → AB is created if
symbols A and B can be derived and there is a correct sentence currently
parsed.
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4 New Ideas

In [25] the set of experiments on bracket grammars, palindromes, toy-NL gram-
mar, and natural language corpora was presented. It was observed that while
learning natural language corpora fitness graph shows sudden changes of the
fitness value. The most probable reason of this is strong cooperative nature of
grammar production rules. Deletion or modification of a rule can deactivate a
huge set of connected productions. This can decrease overall grammar’s fitness.
On the other hand creation or proper modification of existing rule can activate
new set of rules, and dramatically increase overall fitness. Modifying discovery
component could be one of the solutions to this problem. Discovery component
could look at the rule’s position at the derivation tree (rule’s fertility) and more
carefully remove rules that may be important to the parsing process.

According to the concept of the rule’s fertility we introduce new formula for
fitness value of rule:

f =
wc · fc + wf · ff

wc + wf
(3)

where:
fc – ”classic” fitness of classifier expressed by (1),
wc, wf – coefficients,
ff – normalized fitness of classifier’s fertility expressed as:

ff =
p − d − fmin

ffmax − ffmin
(4)

where:
p – (profit) sum of credits of the classifier scored while parsing correct sentence,
d – (debt) sum of credits of the classifier scored while parsing incorrect sentence,
ffmin, ffmax – minimal / maximal credits in the set of classifiers.
The classifier receives the specific credit (equal renounced amount factor * base
amount) from each rule in the derivation tree placed below. The terminal rule
is rewarded by constant value (so-called base amount).

5 Playing a Toy-Grammar

Modified GCS was tested on the tiny natural language grammar called toy-
grammar, that can be described by the following rules in CNF:
S → np vp
np → det n
np → np pp
pp → prep n
vp → v np
vp → vp pp
where S is a start symbol (sentence), np is a noun phrase, vp is a verb phrase,
det is a determinant, n is a noun, pp is a preposition phrase, prep is a preposition
and v is a verb.
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GCS was trained using train set with 40 examples (20 correct and 20 incorrect
ones). All results presented here are average of 50 independent runs.

In the first set of experiments the proper merit of the fertility coefficient wf

was searched. Fifth measures of performance were used. To calculate the average
fitness of the grammar, first we have to find the average fitness for each genera-
tion (over all runs), and then average obtained results. The positive competence
(Competence) of a grammar is the percentage of all positive sentences in the test
corpus that it successfully parses, the negative competence (Ncompetence) is the
percentage of all negative (incorrect) sentences being successfully parsed. Aver-
age competence and average negative are calculated similar to average fitness.
First 80% is the number of generations needed to reach 80% average fitness. We
measured maximal of the average fitness (Max) as well.

In order to put the curves of all measures in one figure, we multiply Ncompe-
tence by 100, and divide First 80% by 5. Figure 1 shows the measures versus the
fertility coefficient wf . Experiment was performed with following settings: gener-
ations 500, crossover probability 0.1%, mutation probability 0.85%, population
consisted of maximal 18 classifiers where 10 of them were created randomly in
the first generation, base amount 1, renounced amount factor 0.5, wc = 1. The
plots of maximal fitness, average fitness, and average competence are similar in
courses. One can observe the saddle for the fertility coefficient equals 3 or 4, for
the coefficient greater than 9 the values of measures decrease considerably. GCS
reaches 80% of average fitness in the smallest number of generations for fertil-
ity between 6 and 9. For the fertility equals 2 and 10, GCS accepts the largest
amount of incorrect sentences. To summarize above results: it seems that the
most promising merit for the fertility coefficient should be taken from the range
6 to 9.
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Fig. 1. The influence of the fertility coefficient (w f)
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Fig. 2. The influence of mutation (m), crossover (c), and fertility (w f)

Table 1. Statistics merits for plots from Fig. 2

Pairs of values Fitness avg. Compet. avg. First 80% Max

normal 74.7 49.6 327 92.3

normal fert 79 58.1 237 91.35

mutation 78.6 57.2 220 94

mutation fert 83.4 66.8 191 97.2

The aim of the second set of experiments was to compare the impact of
mutation and crossover on GCS performance. Runs were conducted with two
pairs of values: mutation m = 0.1, crossover c = 0.85 (Fig. 2a and 2b), and
m = 0.85, c = 0.1 (Fig. 2c and 2d). Additionally, fertility was switched on
(Fig. 2a and 2c) and off (Fig. 2b and 2d). Some statistics were drawn from
algorithms curves (Tab. 1).

A large mutation rate has an interesting effect. The fitness and competence
increases faster at the beginning, for example for 201 generation fitness reaches
70.25% and competence 40.5% without mutation (Fig. 2b), but with mutation
78.2% and 56.5% respectively (Fig. 2d)! Reinforcement with fertility gives much
better results, for 201 generation fitness gains 77.9% and competence 56.1%
without mutation (Fig. 2a), and 80% and 60.2% respectively with mutation
(Fig. 2c). Experiments confirmed the conclusion known in the literature [22],
that mutation works most efficiently in small populations, and proved important
influence of fertility. Adding fertility to the experiment without large mutation
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rate (Fig. 2a) gives similar results as in experiment with large mutation rate but
without fertility (Fig. 2d). Both curves of fitness and curves of competence look
alike, the synthetic measures are almost the same (compare rows 2 and 3 from
Tab. 1). The best results one can observe in experiment with large mutation and
fertility (see row 4 from Tab. 1). It is noteworthy that in this case the curves
of fitness and competence stabilize on the certain level when the population is
approaching the optimum.

6 Summary

Some extensions to the grammar-based classifier system that evolves population
of classifiers represented by context-free grammar productions rules in normal
form were presented. Introduced coefficient of rule’s fertility and new formula
of rule’s fitness seem to be promising modification of discovering module. Ob-
tained results proved that fertility can improve performance of the GCS. Further
experimentation to determine the optimal algorithm parameters is warranted.
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Abstract. Accurate classification of data sets is an important phe-
nomenon for many applications. While multi-dimensionality to a cer-
tain point contributes to the classification performance, after a point,
incorporating more attributes degrades the quality of the classification.
In a pattern classification problem, by determining and excluding the
least effective attribute(s) the performance of the classification is likely
to improve. The task of the elimination of the least effective attributes in
pattern classification is called ”data dimensionality reduction (DDR)”.
DDR using Genetic Algorithms (DDR-GA) aims at discarding the less
useful dimensions and re-organizing the data set by means of genetic op-
erators. We show that a wise selection of the initial population improves
the performance of the DDR-GA considerably and introduce a method
to implement this approach. Our approach focuses on using information
obtained a priori for the selection of initial chromosomes. Our work then
compares the performance of the GA initiated by a randomly selected
initial population to the performance of the ones initiated by a wisely se-
lected one. Furthermore, the results indicate that our approach provides
more accurate results compared to the purely random one in a reason-
able amount of time.

Keywords: data dimensionality reduction, feature extraction, genetic
algorithms, attribute ranking, attribute quality.

1 Introduction

Pattern classification and recognition have been popular research subjects since
longer than three decades. Availability of large data sets with a growing number
of attributes has provided, on one hand, more efficient and higher performance
pattern classifiers to a certain extent. On the other hand, increasing dimension-
ality has called for more complex classifier architectures that, beyond a point,
suffer from the curse of dimensionality. Hence, one faces the problem of opti-
mizing the number of attributes that offers a classifier performing satisfactorily
well while it avoids the involvement of non-contributory attributes. The term
data dimensionality reduction is the name of this optimization process that is
widely applied to multi-dimensional data sets. Two basic approaches to data di-
mensionality reduction are feature (attribute) selection and feature extraction.
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Feature extraction is about obtaining a new (and smaller) set of features from
the original features where the new features provide a better separability among
the classes than do the original features [1]. Principal component analysis (PCA)
[8, 10] and linear discriminant analysis (LDA) [3, 5, 9] are an unsupervised and
a supervised technique in respective order that employ feature extraction. The
transformation of original features to the generated set of features involves the
computation of the eigenvectors of the covariance matrix of original features.
Combined with concerns on how well PCA or LDA maintains the originality of
data, the above transformation makes the feature selection a preferable alter-
native to feature extraction. In feature selection, a subset of original features is
sought that contains the least number of features with the highest contribution
to the classification performance. To find the optimal subset of features, an ex-
haustive search would be necessary. Exhaustive search requires exponential time
and becomes infeasible for large number of features. Instead, genetic algorithms
(GAs) are frequently employed [4, 7, 12] as an adaptive search mechanism for a
suboptimal solution in data dimensionality reduction. GAs in data dimension-
ality reduction are popular with their polynomial time requirements. However,
the random nature of the GA operators makes the algorithm sensitive to the
starting point (i.e., initial population).

In this work, we present a GA for data dimensionality reduction with an
intelligently selected initial population. Here, features that contribute more to
the classification are determined by the attribute ranking procedure described in
[5]. This ranking information is utilized to determine the probabilities of inclusion
for the attributes in the initial population. We compare the performance of the
GA initiated by a pure random initial population to the performance of the
one initiated by a wisely selected initial population. Our experiments show that
this approach outperforms the Genetic Algorithm initiated by a purely random
population.

In determining the fitness of the attribute set selected, we perform a classifi-
cation using this selected subset of features and calculate the accuracy and cost
of the classification. We employ feed-forward neural networks [2] with supervised
learning to classify the Letter Recognition data set [11].

This paper is organized as follows. The implemented attribute ranking method
is discussed and our genetic model is introduced in Section 2. In Section 3, we
give the results of the experiments and a brief discussion concludes the paper.

2 The Genetic Model

Genetic algorithms are search and optimization techniques based on natural se-
lection and evolution mechanisms [6]. Imitating the learning mechanisms in living
organisms, GA methods are applied to a given group of data called population.

A chromosome in the population is a binary string where a gene with value 1
stands for an attribute used in the current classification and a one with value 0 for
an unused one. To reproduce the next generation we used elitism and scattered
recombination as well as the mutation operator. To select the fit individuals into
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the next generation, we used the probabilities of inclusion originating from the
attribute ranking.

2.1 Attribute Ranking

Although there are differences, techniques for the attribute ranking problem are
commonly based on vector distances of patterns in the whole data set. The
technique in [5] that uses the separability correlation measure (SCM) is one such
technique, that is used in this work to generate initial populations.

Separability correlation measure combines two measures: class separability
measure and attribute-class correlation measure. Class separability measure eval-
uates the ratio of intra-class distance to inter-class distance, while the latter
estimates the correlation between the changes in attributes and the resulting
changes in class labels.

2.2 Fitness Function

In order to define the fitness of individuals, the specifications of the desired
solution must be determined. To evaluate the fitness of the chromosome, we use
a function that incorporates two measures. First, we consider the classification
accuracy. We employ feed-forward neural networks learning with supervision as
the classifier; hence, the accuracy of the classification is defined by the average
distance, e, between the observed and the desired output. Second, we include
the complexity of the classifier, which is proportional to d2 due to the nature of
the neural network architecture. We represent the complexity, c, of the classifier
as, c =

(
d
16

)2
, in terms of the number of attributes, d, with normalization. Our

goal is to minimize both of these measures, which we combine into a product,
as in (1).

f(e, c) = e ∗ (0.5 + c/2)0.04 (1)

Due to the nature of the error and the complexity terms, further transformation
was necessary in order to level the impacts of these two factors.

The Letter Recognition data set [11] is considered as the case study. This data
set consists of 20000 letter instances with 16 generated attributes. In order to find
the most important attributes, the classical exhaustive search method requires
experimenting 216−1 different combinations (excluding the chromosome at which
all genes are zero, i.e. no attributes are selected to perform the classification).
Usually, an exhaustive search is infeasible due to the prohibitively large solution
space. Therefore, a genetic algorithm is designed to find a ”fit” solution to the
problem.

3 Results and Conclusions

In this section the mechanism of the genetic model and the experiments are
presented.

The main objective of the solution to the DDR problem is optimizing the
initial multi-dimensional data set by representing it with a decreased number
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of dimensions. While employing the genetic algorithm approach to DDR we
used the following two approaches to generate the initial solution of the genetic
algorithm: The first one starts with a purely random (uniformly selected) initial
space of the dimension subsets. The second set of experiments, on the other hand,
starts with initial populations that are formed by the additional knowledge,
namely the importance ranking of the dimensions found by SCM. Except this,
all other steps of the two genetic algorithms are identical.

All experiments have been setup and run in JAVA. Feed-forward neural net-
works with four layers and an input layer have been used in the experiments.
The input layer consists of 16 elements that hold the positive integer feature val-
ues for the presented pattern. Each of the three hidden layers consists of eight
processing elements. Finally the output layer has a single node that generates an
output signal ranging within [0, 1]. The values of the output node are normal-
ized into this interval to represent one of the alphabet letters in respective order.
The letter ”A” is represented by [0, 1

26 ), ”B” by [ 1
26 , 2

26 ), ”C” by [ 2
26 , 3

26 ), and so
on until the last letter ”Z” which is represented by [2526 , 1). We have conducted
experiments with one, two and three hidden layers with various combinations
of the numbers of processing elements in each hidden layer. We have based our
selection of the neural network architecture on the results of these experiments.
Hyperbolic tangent sigmoid function given in (2) is employed as the activation
function in all processing elements except the single node in the output layer.

o(net) =
enet − e−net

enet + e−net
(2)

The output node simply transmits the value of its input with no further modifica-
tions, i.e., o(net) = net. To train the neural network, the Levenberg-Marquardt
backpropagation scheme [2] has been used.

The genetic model was run 20 times and the best final chromosome case is
presented. Out of these 20 runs, 10 of them were run with uniformly gener-
ated initial populations, and 10 with initial populations generated by the SCM
method. The special selections favor the attributes that have higher importance
found with SCM. Since SCM does not find probabilities but just weights, these
weights are normalized to create a selection probability vector between 0.03 and
0.97. To select the special initial population, we generate a random vector of
16 dimensions and if a random element of this vector is less than the selection
probability, then the corresponding attribute is selected in the initial popula-
tion. The reason we are normalizing to [0.03, 0.97] and not to the usual [0,1] is
to include the possibility of the worst attribute to be selected and of the best
attribute not to be selected.

We chose the uniform mutation operator with the mutation probability set to
1%. In this model, each bit is selected (with 1% probability) for mutation, and
the content of the selected bit is replaced by a 0 or 1 with equal probabilities. The
elite count is set to 5 and the crossover ratio is 90%, meaning that each generation
is crowded by 90% using crossover. Our experiments showed that among the
possible crossover methods, scattered crossover worked best for this model. As
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for the other parameters of the genetic algorithm, we set the population size to
100 and run each GA model for 40 generations.

The only difference of these two approaches is in the way initial populations
are generated. As mentioned above, there is an additional knowledge embedded
in the second solution methodology. The importance ranking of the attributes,
which are calculated by SCM formula, specifies the impact of discarding a single
attribute to the classification performance. In the scope of this chapter these two
solution methodologies will be experimented.

Although, both approaches apply the same standard steps (representation,
recombination, mutation, selection) of the GA, they do not provide resembling
results. As predicted, the knowledge-based solution ends up with better results
compared to the purely random initial solution.

We have evaluated the success of the GA methods by the best chromosome
generated by the final population. The best chromosome generated by the purely
random initial population has a fitness value of 13.01 whereas the best chromo-
some obtained by the GA initiated by the SCM method has a fitness value of
12.80. It should also be noted that these are the best results obtained out of 10
different GA runs for each method. The progress of the runs are given in Figures
1 and 2. In both figures we observe that the average fitness values approach
towards the best fitness value closely. This occurs slightly sooner in experiments
starting with a purely random initial population than that with a wisely selected
initial population. However, the worst (i.e., maximum) fitness values fluctuate
less especially towards the final generations in the experiments with a wisely
selected initial population compared with those with a purely random initial
population.

In this work, we present an evolutionary solution for data dimensionality
reduction problem applied to a letter recognition data set. Due to the nature
of the problem, dimensionality reduction has a very big, discrete solution set.
To find the optimal solution, one would need to exhaustively search this large
solution space (in our case, this corresponds to 216−1 classification experiments
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Fig. 1. Best, worst, and average scores of GA run with uniformly generated initial
population
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Fig. 2. Best, worst, and average scores of GA run with initial population generated
via SCM

using a specific neural network architecture), which proves infeasible. Therefore,
we have designed a genetic algorithm based model.

We believe that both the stability of the approach of the average fitness value
towards the best one and the rather monotone reduction of the worst fitness
values with increasing number of generations depend on the restricted and wise
selection of the initial population. Further, not to turn off the possibility for
finding a promising individual among the less fit ones while working with fitter
individuals (i.e., to explore the less fit individuals while exploiting the fitter
ones)[13], we used, in all experiments, a slightly higher mutation rate of 1%
than that commonly used in experiments (i.e., 0.1%-0.5%).
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Abstract. Many engineering applications often involve the minimiza-
tion of some objective functions. In the case of multilevel optimizations
or functions with many local minimums, the optimization becomes very
difficult. Biology-inspired algorithms such as genetic algorithms are more
effective than conventional algorithms under appropriate conditions. In
this paper, we intend to develop a new virtual bee algorithm (VBA)
to solve the function optimizations with the application in engineering
problems. For the functions with two-parameters, a swarm of virtual bees
are generated and start to move randomly in the phase space. These bees
interact when they find some target nectar corresponding to the encoded
values of the function. The solution for the optimization problem can be
obtained from the intensity of bee interactions. The simulations of the
optimization of De Jong’s test function and Keane’s multi-peaked bumpy
function show that the one agent VBA is usually as effective as genetic al-
gorithms and multiagent implementation optimizes more efficiently than
conventional algorithms due to the parallelism of the multiple agents.
Comparison with the other algorithms such as genetic algorithms will
also be discussed in detail.

1 Introduction

Nature inspired algorithms based on the swarm intelligence and the self-organized
behaviour of social insects can now solve many complex problems such as the
travelling salesman problem and the rerouting of traffic in a busy telecom net-
work [1, 2]. This type of algorithms is only a fraction of biology-inspired algo-
rithms. In fact, biology-inspired algorithms form an important part of compu-
tational sciences that are essential to many scientific disciplines and engineering
applications. These biologically inspired algorithms include genetic algorithms,
neural networks, cellular automata and other algorithms ([9, 10, 12]). However,
substantial amount of computations today are still using the conventional meth-
ods such as finite difference, finite element, and finite volume methods. New
algorithms are often developed in the form of the hybrid combination of biology-
derived algorithms with the conventional methods, and this is especially true in
the field of engineering optimizations. Engineering problems with optimization
objectives are often difficult and time consuming, and the applications of nature
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or biology inspired algorithms in combination with the conventional optimization
methods have been very successful in the last several decades.

Biology-derived algorithms can be applicable to a wide variety of optimiza-
tion problems [12]. For example, the optimization functions can have discrete,
continuous or even mixed parameters without any a priori assumptions about
their continuity and differentiability. Thus, the evolutionary algorithms are par-
ticularly suitable for parameter search and optimization problems [4, 13]. In ad-
dition, they are suitable for parallel implementation. However, evolutionary al-
gorithms are usually computationally intensive, and there is no absolute guar-
antee for the quality of the global optimizations. Besides, the tuning of the
parameters can be very difficult for any given algorithms. Furthermore, there
are many different evolutionary algorithms and the best choice of a particular
algorithm depends on the type and characteristics of the problems concerned. In
this paper, we will present a virtual bee algorithm and use this new algorithm
to study the function optimization problems arising naturally from engineering
applications.

2 Engineering Optimization

2.1 Engineering Optimization

Many problems in engineering and other disciplines involve optimizations that
depend on a number of parameters, and the choice of these parameters affects
the performance or objectives of the system concerned. The optimization target
is often measured in terms of objective or fitness functions in qualitative models.
Engineering design and testing often require some iteration process with param-
eter adjustment. Optimization functions are generally formulated as:

Optimize: f(x), Subject to: gi(x) ≥ 0, i = 1, 2, ., N .

where x = (x1, x2, , xn) ∈ Ω (parameter space). The optimization can be either
expressed as maximization or more often as minimization [4]. As the space of
parameter variations is usually very large, systematic adaptive searching or op-
timization procedures are required. In the past several decades, researchers have
developed many optimization algorithms. Examples of conventional methods are
hill-climbing, gradient methods, random walk, simulated annealing and heuris-
tic method etc. The examples of evolutionary or biology inspired algorithms are
genetic algorithms, photosynthetic method, neural network, and many others
[9, 6]. In next section, we will briefly outline the genetic algorithm for engineer-
ing optimizations.

2.2 Genetic Algorithms

Genetic algorithm (GA) is a very effective and powerful method that has been
widely used in engineering optimizations. GA is a model or abstraction of bi-
ological evolution, which includes the following operators: crossover, mutation,
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inversion and selection [9]. This is done by the representation within a computer
of a population of individuals corresponding to chromosomes in terms of a set of
character strings, then the evolution of individuals in the population through the
crossover and mutation of the string from parents, and the selection or survival
according to their fitness.

For the optimization of a function using genetic algorithms, one simple way
is to use the simplest GA with a fitness function: φ = A − y with A being
the large constant and y = f(x), thus the objective is to maximize the fitness
function and subsequently minimize the objective function f(x). However, there
are many different ways of defining a fitness function. For example, we can
use the individual fitness assignment relative to the whole population φ(xi) =
f(xi)/

∑N
i=1 f(xi), where xi is the phenotypic value of individual i, and N is the

population size [13, 6].

3 Virtual Bee Algorithms

3.1 VBA Algorithms

Algorithms based on social insects and swarm intelligence begin to show their
power and effectiveness in many applications. A swarm is a group of mobile
agents such as bees that are liable to interact or communicate in a direct or
indirect manner in their local environment. For example, when a bee find a food
source and successfully bring some nectar back to the hive, it communicates
by performing the so-called ’wangle dance’ so as to recruit more other bees to
go to the food source. The neighbouring bees seem to learn the distance and
direction from the dance [7, 8]. As more and more bees forage the same source,
it becomes the favoured path. Based on these major characteristics, scientists
have developed several powerful algorithms [1, 11]. If we only use some of the
nature or behaviour of bees and add some new characteristics, we can devise
a class of new algorithms. In the rest of this paper, we will first describe the
main procedure of our virtual bee algorithm (VBA) and then apply it to solve
function optimizations in engineering.

The VBA scheme starts with a troop of virtual bees, each bee randomly won-
ders in the phase space and in most case, the phase space can be simply a 1-D
or 2-D space. The main steps of the virtual bee algorithm for function optimiza-
tions are: 1) creating a population of multi-agents or virtual bees, each bee is
associated with a memory bank with several strings; 2) encoding of the objec-
tives or optimization functions and converting into the virtual food; 3) defining
a criterion for communicating the direction and distance in the similar fashion
of the fitness function or selection criterion in the genetic algorithms; 4) march-
ing or updating a population of individuals to new positions for virtual food
searching, marking food and the direction with virtual wangle dance; 5) after
certain time of evolution, the highest mode in the number of virtual bees or in-
tensity/frequency of visiting bees corresponds to the best estimates; 6) decoding
the results to obtain the solution to the problem.
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The procedure can be represented as the following pseudo code:

// Create a initial population of virtual bees A(t)
// Encode the function f(x,y,...) into virtual food/nectar

Initial Population A(t);
Encode f(x,y) |-> F(x,y);

// Define the criterion for communicating food location with others
Food F(x,y) |-> P(x,y)

// Evolution of virtual bees with time
t=0;
while (criterion)
// March all the virtual bees randomly to new positions

t=t+1;
Update A(t);

// Find food and communicate with neighbouring bees
Update F(x,y), P(x,y);

// Evaluate the encoded intensity/locations of bees
Evaluate A(t), F(x,y), P(x,y)

end while
// Decode the results to obtain the solution

Decode S(x,y,t);

3.2 Function Optimization and Comparison with GA

The virtual bee algorithm has some similarity with genetic algorithms, but it
has multiagents that work independently and thus it is much more efficient than
the genetic algorithms due to the parallelism of the multiple independent bees.
To test this, we first implement the VA algorithm to solve the optimization of
the generalized De Jong’s test function [3],

f(x) =
n∑

i=1

x2α, |x| ≤ r, α = 1, 2, ...,m. (1)

where α is a positive integer and r is the half length of the domain. This function
has a minimum of f(x) = 0 at x = 0. For the values of α = 3, r = 256, and
n = 50, the results of optimization of this test function are shown in Figure 1.
The left figure shows the optimization of the test function using the virtual bee
algorithm (marked with dots) and its comparison with the results obtained by
genetic algorithm (solid curve). The best estimate obtained is 0.1194. We can
see that the new VA algorithm is much efficient than the GA method. The figure
on the right shows the two different sets of results using 5 bees (dotted) and 20
bees (marked with diamonds). As the multi-bees work almost independently in
a parallel manner, the set of 20 bees is much faster than the set of 5 bees in
obtaining the best estimate of about 0.0016616.
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Fig. 1. Function optimization using virtual bee algorithms. Multi-bees are more effec-
tive than a single bee in approaching the best estimates f(x) → 0

3.3 Multi-peaked Functions

The function we just discussed is relatively simple in the sense that it is single-
peaked. In reality, many functions are multi-peaked and the optimization is thus
multileveled. Keane studied the following bumpy function in the multi-peaked
optimization problem [14],

f(x, y) =
sin2(x − y) sin2(x + y)√

x2 + y2
, 0 < x, y < 10. (2)

The optimization problem is to find (x, y) starting (5, 5) to maximize the
function f(x, y) subject to: x + y ≤ 15 and xy ≥ 3/4. This problem makes
the optimization difficult because it is nearly symmetrical about x=y, and thus
the peaks occur in pairs but one is bigger than the other. In addition, the true
maximum is f(1.593, 0.471) = 0.365 which is defined by a constraint boundary.
Although the properties of this bumpy function make difficult for most optimiz-
ers and algorithms, the genetic algorithms and other evolutionary algorithms
perform well for this function and it has been widely used as a test function
in the genetic algorithms for comparative studies of various evolutionary algo-
rithms or in the multilevel optimization environment [5]. Figure 2 shows the
surface variation of the multi-peaked bumpy function (the left picture). We have
used 40 bees in parallel to solve the optimization problem of this bumpy func-
tion. After t=500 runs, the concentration distribution of the virtual pheromone
laid by the randomly moving virtual bees is shown on the right in Figure 2. We
can see that the pheromone concentration is overlapping well with the contour
of the function, thus the location of the pheromone focus is the location of the
optimal solution.
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Fig. 2. Multi-peaked function optimization and the virtual pheromone concentration
laid by 40 virtual bees

4 Conclusions

By simulating the swarm interactions of social honey bees, we have developed
a new virtual bee algorithm (VAA) to solve the function optimizations. For the
functions with two-parameters, we have used a swarm of virtual bees that won-
der randomly in the space. These bees leave the virtual pheromone when they
find some target food corresponding to the encoded value of the functions. The
solution for the optimization problem can be obtained from the concentration
of the virtual pheromone. Comparison with the other algorithms such as ge-
netic algorithms suggests that virtual bee algorithms work more efficiently due
to the parallelism of the multi-bees. As many engineering optimizations have
multi-peaked functions, the new algorithms can be expected to have many ap-
plications in engineering. In addition, there are many challenges in the virtual
bee algorithms. Further research can focus on the efficiency of different encod-
ing/decoding of objective functions, updating rules, evaporation of the long term
pheromone, and the parallel implementation technique of the virtual bee algo-
rithms.
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Abstract. Partitioning problem in codesign is of great importance since
it can widely influence the characteristics of the system under design. The
numerous constraints imposed by the environment and/or the underly-
ing target architecture, in addition to its NP-Completeness makes the
problem hard to solve. This paper introduces an automatic partitioning
approach inspired by the collective behavior of social insects such as ants,
which are able to find the shortest path from their nest to a food source.

1 Introduction

Real-time embedded systems are invading more and more our daily life. In fact,
domains such as medicine (surgical robots, exploration tools, pacemakers, hear-
ing prosthesis) take benefit from the advances in this domain. These systems are
a mixture of hardware ad software: a software application is ran on a hardware
architecture made of processors of various natures: hardware processors, soft-
ware set-instruction processors, etc. The best approach for mixed system design
is called codesign (concurrent-design). Codesign consists of a succession of steps.
The major one is partitioning that is the process of determining the parts of
the system that must be implemented in hardware and those parts that are to
be in software [1]. This task is of critical importance since it has a big impact
on final product cost/performance characteristics [2]. Any partitioning decision
must, therefore, take into account system properties. It must also include several
constraints related to the environment, implementation platform and/or system
functionality requirements. Partitioning is known to be an NP-Complete prob-
lem. The only feasible way to solve it is, therefore, the use of heuristics since
exhaustive methods take a prohibitive execution time to find the best solution.

This paper introduces an automatic partitioning approach that uses ant
colony approach which is a meta-heuristic allowing to find the best solution
to hard-to-solve optimization problems.

Section two reviews some of the reported partitioning approaches. The third
one introduces the proposed partitioning approach. Section four presents ant
colonies and the way they can solve partitioning problems, while the last one
lists some experiments and results.

J. Mira and J.R. Álvarez (Eds.): IWINAC 2005, LNCS 3562, pp. 324–337, 2005.
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2 Previous Work

Among the works that try to automatically solve partitioning problem, some of
them use the exact approaches such as d’Ambrosio and al. [3], Pop and al. [4]
works apply a branch and bound algorithm to map the tasks onto architectural
components. Approached methods allow getting one (or many) solutions in an
”acceptable” time. There are mainly two kinds of heuristics: the methods ded-
icated to the problem to solve, and the general heuristics, that are not specific
to a particular problem. One of the dedicated methods is the ”bottom-up” ap-
proach, also called ”constructive approach” which is very popular [2], [5]. The
partitioning strategy introduced in [6] combine a greedy algorithm, with an ex-
tern loop that takes into account global measures. In VULCAN, Gupta et De
Micheli [7] use an approach where all the tasks are first affected to hardware.
The tasks are progressively moved to software, using a greedy approach. The
main advantage of applying specific approaches is that they are ”tailored” for
the given problem.

The general heuristics are not dedicated to a particular type of problems,
and are widely used in other research fields, consisting of NP-Complete prob-
lems. This class also includes algorithms starting with an initial solution (often
randomly chosen), that is iteratively improved. The different solutions are com-
pared, using a cost function. The advantage of this type of heuristics is that it
is possible to use cost functions that are arbitrary chosen and easy to modify.
They also allow achieving a solution in a short time. Their drawback is that it
is impossible to guarantee that then achieved solution is the optimum. Among
the general heuristics, there are: variable-depth search methods such as variants
of Kernighan-Lin (KL) migration heuristics (used in [8]), Knapsack Stuffing al-
gorithm (used in [9]), hill-climbing method (used in [10]), simulated annealing
(used in [11])

The works of Eles and Peng [12] compare two heuristics for automatic parti-
tioning: the first one, based on simulated annealing, and the other one on taboo
search. Other approaches exist, such as [13] that is based on a min-cut pro-
cedure. In addition, integer linear programming formulations are proposed for
hardware/software partitioning, by [14].

Recent works have been published in partitioning area [15], [16], [17], [18],
which tend to prove that the problem is still opened.

3 The Proposed Solution for Partitioning

When the size and complexity of the problem rise, it becomes difficult, for a
human being, to apprehend all the details, and manual resolution of the problem
becomes intractable. This is the reason why an environment called PARME [19]
was designed and implemented, allowing the user to test partitioning heuristics.
It offers the opportunity to study the parameter values, as well as the strategies
to use, according to the type of problem.
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In this paper, we introduce the tests performed with ant colonies, using
PARME. Such tests allow tuning the parameters and the strategies of the algo-
rithm. The results are compared with those achieved with Genetic Algorithms.

3.1 Representation of a Partitioning Solution

Partitioning can be seen as the mapping of all the application entities onto
the different processors of the target architecture. Solving this affectation prob-
lem means trying to find a solution that minimizes a cost function defined
by the user. The representation proposed for this mapping problem is the
following:

Let Nbe be the number of entities of the application under design and Nbp the
number of processors of the target architecture. The coding technique consists
of creating a vector of Nbe cells, in which each entry corresponds to an entity
number. The entities are sorted in the increasing order. Each vector cell contains
the number of the processor to which the corresponding entity is affected during
partitioning.

Example: The following representation corresponds to a solution of a partition-
ing problem with 4 entities (Nbe=4) mapped on 2 processors (Nbp=2).

Entity 0 1 2 3

Processor 0 1 0 1

This means that the entities 1 and 3 are mapped on processor Number 1;
Entities 0 and 2 are mapped on processor Number 0.

3.2 The Cost Function

The partitioning algorithm is guided by a cost function that allows evaluating
the quality of a given solution. It takes into account different cost constraints
(hardware and software space), performance constraints (particular object exe-
cution times, global application time) and communication (because information
exchange between different application entities is often a bottleneck). The char-
acteristics taken into account in our approach are thus: space, execution time
and communication.

A cost function is used to evaluate the quality of generated solutions. Unlike
many partitioning approaches reported, the works presented in this paper take
into account different cost constraints (hardware and software space), perfor-
mance constraints (particular object execution times, global application time)
and communication (because information exchange between different applica-
tion entities is often a bottleneck). The characteristics taken into account in
our approach are thus: space, execution time and communication. Weights are
associated to each characteristic to allow according differentiating the relative
importance of each parameter. The cost function is detailed in [17].
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4 Solving Partitioning with Ant Colonies

The behavior of insects (in particular ants), as well as their organization, has al-
ways interested researchers. They wanted to understand how do ants to find the
shortest path between their nest and a food source. The resolution of this prob-
lem, which is relatively complex, calls for a certain organization and a collective
work. Ants can solve this problem in a collective manner, based on a particular
communication means: ”pheromone” which is a volatile chemical product they
leave as they go by. This substance allows them to locate their path later, and
also to attract other ants. The ants modify the pheromone concentration during
their walk, and thus dynamically modify their environment.

4.1 Ant Colony Optimization (ACO) Meta-heuristic

Dorigo and al. [20] proposed an algorithm for solving the trading salesman prob-
lem that was inspired by ant cooperation to find the shortest path between their
nest and a food source. Several algorithms, based on this principle have been
developed to solve optimization problems [21], [22], [23], [24], etc.

PROCEDURE ACO Meta heuristic()
While (not stopping criterion) do

Program activities:
Ant activity;
Pheromone Evaporation;
Demon actions optional;

End Program activities
End do

End.

Fig. 1. ACO Meta-heuristic

The ACO (Ant Colony Optimization) is a meta-heuristic that helps to design
algorithms trying to solve optimization problems [20]. It uses three mechanisms
that are: ant activity, pheromone evaporation and centralized actions of a demon
that can be optional (fig. 1).

Ant Activity. Each ant builds a solution by scanning the research space, which
is represented as a graph. There are as much solutions as ants that are launched
to solve the problem. At the beginning, ants are randomly placed on the edges
of the graph (initial states) that represent the allocation of values to variables.
Then they move in their neighborhood to build their solution. The choice of the
following edge to visit, among a certain number of neighbors (candidate list),
is made according to ”a stochastic local search policy”. This policy is based on
information that is local to the ant, values of pheromone trails that are local to
the visited nodes, and constraints that are specific to the problem. Pheromone
trails can be associated to components, or connections. When an ant moves
towards a new node, it may add a quantity of pheromone on it, or on the vertex
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leading to that node. This quantity depends on the quality of the solution. When
an ant finishes building its solution, it may update the pheromone rate on the
path it has taken. It is then removed from the system.

Pheromone Effect: The more a path is used by ants, the more the pheromone
rate on it tends to increase. The method for implementing pheromone trails
is important ant has an effect on the behavior of the method and its perfor-
mance. By modifying the pheromone rates on their path, ants modify dynami-
cally the environment and influence the decision of the other ants. Pheromone
evaporation allows avoiding a premature convergence of the algorithm towards
a local optimum (this problem is often encountered with optimization
methods).

Pheromone Update: The ant may put down pheromone on its way at two differ-
ent moments:

– During the building of the solution (online step by step);
– At the end of the building operation. In this case, the ant retraces its steps

ant puts down pheromone on the way it took (online delayed).

Pheromone Evaporation. During their walk, ants tend to choose paths that
have the highest pheromone rate. However, this can lead to gathering the ants
on the same regions of the search space and thus, and cause a convergence
towards the same solution. This is why a mechanism called ”evaporation” allows
decreasing the pheromone rates, leading therefore to explore new regions, and
slow down the convergence.

Demon Action. In order to improve ACO performance, a component called
”demon” is integrated. It has a global view on the search state, acting on the envi-
ronment. It may intensify the search by adding extrapheromone on the promising
paths, or on the contrary diversify the search by steering it towards new regions.
This is called ”offline update”.

Candidate List. When the problem to solve presents a big neighborhood, a
candidate list can be used by ants to limit the number of neighbors to take into
account. This latter can improve the performance of the algorithm. These lists
contain subsets of the current state neighbors. They allow to greatly reducing
the search space.

4.2 Ant System

The first algorithm implemented (called Ant System: AS) [25] allows to better
understand the principle of the algorithms based on ants. This algorithm was de-
signed to solve the traveler salesman problem that consist of finding the shortest
path connecting two towns, each town being visited only once. This problem can
easily be represented as a graph G (N, A) where N is the set of nodes represent-
ing the towns to visit, and A the set of vertices illustrating the distance between
two towns. The principle of AS is the following: during several iterations, a set
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of ants is launched to solve this problem. Each ant (k) builds its solution in N
steps. At the beginning of each iteration (t), the ants are randomly located on
the edges of the graph (towns). An initial value TAU0 is placed on the vertices
during the initialization phase.

Each ant covers the graph to build a solution, by making some choices and
adding pheromone on its way (online step by step or online delayed). When the
ant (k) is in one town (i), it must choose a town (j) among the list of towns it
has not visited yet (Jk

i ).
This choice is made on the basis of the heuristic information NUij = 1/dij

(the reverse of the distance between the two towns i and j), and the pheromone
information, according to the following rule [26]:

P k
ij(t) =




(T AUij(t))A∗NUB
ij∑k

l∈J
(T AUil(t))A∗NUB

ij

Ifj∈Jk
i

0 Else (1)

Where: TAUij(t) is the pheromone rate on node i;
Jk

i is the set of towns in the neighborhood of i, and that are not visited yet
by ant k; A and B are the adjustment parameters of the heuristic specific to the
problem versus pheromone. They are used to weight the magnitude of pheromone
trail TAU and the attraction ; NUij is the value of the heuristic function that
is the reverse of the distance between towns i and j in this case. A traveling
towards a town j depends on A and B parameters. If A = 0, the traveling is
made according to a value NUij that is to say that the nearest town is selected.
The pheromone does not influence the decision of the ant. On the other hand,
if B = 0, the values of pheromone trails decide the ant k to take a particular
path. A and B allow to intensify or diversify the search according to their values.
Once an ant k has built its solution, it adds on the path it followed a quantity of
pheromone that depends on the quality of its solution. This quantity is defined
as follows:

∆TAUkij(t) =
{ Q

Lk(t)
If(i,j)∈T k(t)

0 Else (2)

Where T k
(t) is the distance covered by the ant k at the instant t; Lk

(T ) is the
length of the tour and Q a fixed parameter.

The following ants are influenced by these trails during the choice of the towns
to visit through the different iterations. Before launching new ants searching
for the optimal solution, pheromone evaporation is performed according to the
following formula: TAUij(t + 1) = (1 − RHO).TAUij(t) + ∆TAUij(t) Where:
∆TAUij(t) =

∑m
k=1 ∆TAUk

ij(t);m is the number of ants;
and (1- RHO) the pheromone evaporation coefficient. The algorithm of (fig. 2)
describes the steps of an ant system.
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Algorithm: Ant System
For t = 1 to tmax

For each ant k = 1 to m
Randomly choose a town
For each not visited town.

Choose a town j, in the list Jk
i of the remaining towns

End For
Put a trail ∆TAUk

ij(t) on the path T k(t)
End For
Evaporate the trails

End for
End

Fig. 2. ACS steps

4.3 Problem Representation

Let us consider a graph G=(C,L) associated to a discrete optimization problem.
The solution to this problem can be expressed as the feasible paths of G. The aim
of ACO algorithm is to find a path (a sequence) of minimal cost while respecting
the constraints O[27].

The ants of the colony collectively solve the problem by coding the collected
information (during their walk on the graph) as artificial pheromone. The ver-
tices may have heuristic values NUij, giving information on the problem.

For example, in the TSP (traveling Salesman Problem), NUij is associated
to the inverse of the distance between the towns i and j [28]. Pheromone and
heuristic information is used to determine the probabilistic rules.

Graphical Modeling of Partitioning. In order to be able to solve partitioning
problem using ACO, it first must be modeled as CSP problem (Constraint Sat-
isfaction Problem). X = E0, E1, , ENbe-1, D(Ei) = P0, P1, , ENbp-1, C rep-
resents the partitioning constraints. We proposed to consider the graph edges
as combinations of each entity with each processor of the system under design.
Each couple (Entity N, Processor N) is coded to obtain an integer that repre-
sents a given entity and the associated processor. The coding function used is:
Code:(0...Nbe)*(0...Nbp) → (0...Nbe*Nbp-1)

(ne, np))→ Code(ne, np) = ne*Nbp+n

Example: (fig. 3) If we have to map four entities E0, E1, E2 et E3 on two
processors P0 and P1, we get the following codes: Code(0,0) = 0*2+0 = 0;
Code(0,1) = 0*2+1 = 1; Code(1,0) = 1*2+0 = 2; Code(1,1) = 1*2+1 = 3;
Code(2,0) = 2*2+0 = 4; Code(2,1) = 2*2+1 = 5; Code(3,0) = 3*2+0 = 6;
Code(3,1) = 3*2+1 = 7; The path found 0, 3, 4, 7 represents the solution (0,0),
(1,1), (2,0), (3,1).
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Fig. 3. Graph of the example

4.4 Ant Colony System for Partitioning

The main idea behind ACS [20] is to model the problem as a search for the
best path in a particular graph. The ant behavior is determined by defining the
starting state, the ending conditions, the building rules, the pheromone update
rules and the demon actions [20]. Each solution S is a vector of integers. Each
entry in the vector (corresponding to an entity number) contains the number of
the processor the entity has been mapped onto.

Begin
Initialize pheromone;
For (i=1 to Max Iter) do

For (each ant) do
Generate randomly an initial solution S0;
Build a solution Sk;
Apply the delayed online update of the pheromone;

End;
Determine the best solution found in this iteration;
Apply the offline update of the pheromone;

End;
End.

Fig. 4. ACS algorithm

The ACS algorithm for partitioning tries to improve the initial solutions that
are generated. Each solution S is an array of integers. Each position in the array
(corresponding to an entity number) contains the number of the processor to
which it has been assigned.

Pheromone Utilization. The choice of the graph element to which pheromone
is associated (components or connections) is an important point in the algorithm.

a. Pheromone on components: the first possibility is to put pheromone on
the nodes (components). In this case, the pheromone quantity is proportional to
the wish of getting a particular assignment in the solution (taking into account
some characteristics of a given solution). The state transition rule used by an
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ant k, called pseudo-random proportional rule can be found in [29]. An ant k
randomly generates q.

– If q is less or equal to q0, then the following component to choose (node
to visit) will be the one, in the neighborhood, that contains the maximum
quantity of product (between pheromone and heuristic) : intensification.

– Else (q greater than q0) it will be chosen according to a probability Pk
(diversification).

Where q0 is a parameter of the algorithm, ranging between 0 and 1, and deter-
mining the relative importance between exploitation and exploration.

b. Pheromone on connections: another possibility to associate pheromone is
to put it on connections. The quantity of pheromone on the connection between
two components is thus proportional to the advantage of having the two corre-
sponding assignments in the same solution. For an ant k that moves from a node
r to another node u, the pheromone update rule remains the same.

c. Pheromone on connections with sum: the last possibility takes into account
the dependence of an assignment with the ones already done. The ant k randomly
generates q.

– If q is less or equal to q0, then the following component to take will be: the
component in the neighborhood whose sum of products between pheromone
and heuristic of the connections with all the visited components is maximal.

– Else (q greater than q0) it will be chosen with a probability Pk.

Other Parameters. Building a new solution: This strategy consists of making
each ant start from a complete initial solution S0 which is randomly generated.
At each step, a new solution Sk is generated by applying a flip on the current one.
Flipping means changing the processor to which a selected entity was previously
affected. At each iteration, the entity Xito flip is chosen with a probability P k

Xi

using the state transition rule:
If q ≤ q0 Then

P k
Xi(t) =

{
1 if(i,j)=Argmax(i,j)∈Jk{TAUij(t)∗[NUij(t)]

B}
0 Else (3)

Else (q greater than q0) Then

P k
Xi(t) =

TAUij(t) ∗ [NUij(t)]
B∑

Xl∈Jk TAUlm(t) ∗ [NUlm(t)]B
(4)

Where Xij = Xik at the instant t ; k ∈ 0, 1, , Np − 1 with Np the number of
processors in the system.

The increase of q0 value leads to a concentration of the search on the com-
ponents of the best solutions. The contrary promotes the exploration of other
areas in the search space.
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– Pheromone evaporation: evaporation is applied by the following rule:
TAUij = (1-RHO)*TAUij.

– Online delayed update: adding pheromone to a solution S* follows the rule:
TAUij = TAUij + RHO*(cost(S*)/total number of components).

– Offline update is applied by the rule:
TAUij = TAUij + RHO*(cost(Best Solution)/cost(S*)).

– Properties of the heuristic used by the state transition rule: in order to
solve partitioning with ACO, the following heuristic proceed as follows: if
the objective function is F=(Space + Time + Communication), then for a
couple entity, processor (e, p):
Heuristic(e, p) = the cost obtained by the entities already assigned + The
space that e occupies on p + The execution time of e on p + The cost of
the communication between e and the entities that are already assigned.

5 Tests and Results

The following tests have been performed to illustrate the execution times ob-
tained with partitioning alone. All the test have been performed on an Intel
Pentium IV 2,8 GHz with a 256 Mb RAM. Notice that the execution times con-
cern only the effective processing time of the algorithm, excluding display and
Input/Output times.

5.1 Presentation of the Benchmark Used

The tests we performed using PARME concerned several benchmarks of vari-
ous sizes, but for space reasons, we will focus on the most interesting one: it
corresponds to a real program implementing a Genetic Algorithm (GA) used in
PARME. The objective is to speed up this program by mapping it on a parallel
architecture. This benchmark contains 10 entities that must be run on a target
architecture made of two heterogeneous processors (a classical instruction-set
processor, and a fast hardware one). It is very difficult to solve, since it has only
two feasible solutions.

The application of the exact method to the refined benchmark is possible,
since the number of solutions is relatively low (1024). It is nevertheless clear that
the application of a manual method becomes impossible. The results achieved
by the exact method confirm the complexity of the problem: there exist only two
feasible solutions to this problem. The first one, at the 382nd iteration, gives the
following cost: 233343; the second one is the optimum, achieved at the 944th
iteration. It gives the following cost: 214189.5. Only one optimal solution can
be found over the 1024 possible combinations, that is to say, a probability of
0.00097 to get this optimum.

In the following, some of the results obtained by the ant colony approach are
presented. Numerous simulations have been carried out, but for space reasons,
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we will list only some of the most significant. The execution times are compared
with those obtained with GA.

5.2 Execution of Ant Colonies

Table 1 illustrates some of the simulations that have been carried out, using ant
colonies, with different sets of parameters. Pheromone was stored on nodes.

A cost of ”X” means that no feasible solution was found. By ”feasible solu-
tion”, we mean a solution that does not exceed the maximum space available
on each processor. Since the benchmark is hard, only an important size of the
ant colony (not less than 150 ants) with a maximum candidate list (size of the
neighborhood) and a number of generations at least equal to 50, could get the
optimal solution. The algorithm stops after 50 generations.

Table 1. Parameters and results using Ant colonies

Col Nit Ng Can TAU0 RHO A B q0 Cost It Time(s)

200 10 50 20 0.1 0.1 0.01 1 0.8 214189.5 27 13.14
100 10 50 10 0.1 0.1 0.01 1 0.8 233343.0 8 1.26
150 10 50 20 0.1 0.1 0.01 1 0.8 214189.5 13 5.97
90 10 50 20 0.1 0.1 0.5 1 0.8 233343.0 10 1.45
100 50 50 10 0.1 0.1 0.5 1 0.8 214189.5 13 9.24
200 8 50 20 0.1 0.1 0.01 1 0.8 X X X
200 10 30 20 0.1 0.1 0.01 1 0.8 X X X
150 50 50 10 0.1 0.1 0.5 1 0.8 214189.5 2 2.92

Col: colony size ; Nit: Number of iterations; Ng: Number of generations; Can:
Size of the candidate list; It: iteration where the best solution was found; Time:
Time to find the best solution. q0: intensification/diversification parameter;
TAU0: initial value of pheromone; RHO : pheromone evaporation rate; A:
influence of pheromone; B: influence of heuristics.

5.3 Comparing with the Results Obtained with Genetic
Algorithms

It was also possible to get the optimum using another meta-heuristic: the Ge-
netic Algorithms (GA) [26]. However, since the GAs are known to prematurely
converge, the only way to get the best solution was to use a strategy called ”shar-
ing” [26]. This strategy allows diversifying the population, avoiding the GA to
get trapped in a local optimum. But the cost is a much greater time consump-
tion: 7,34 seconds of average time to get the best solution with ant colonies,
versus 16.63 seconds with GAs. Notice that the benchmark used is rather small
(only 1024 possible solutions). It is easy to imagine that the difference will be
much more significant when benchmarks are of bigger size.

NG: Number of Generations; S: Sigma (Sharing); A: Alpha (Sharing); C:
Crossover probability and replacement technique; M: Mutation probability and
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Table 2. Simulations performed with Genetic Algorithms

NG S A C M EC It ET(s)

60 1 0.01 0.8/CRP 0.1/CRP 214189.5 7 12.96
100 5 0.01 0.9/CRP 0.09/CRP 214189.5 8 15.97
100 1 0.01 0.7/CRP 0.9/CRP 214189.5 12 20.95

replacement technique; NBS: N Best Selection (The N best individuals are se-
lected); CRP: Children Replace Parents; EC: Elite solution Cost; It: Iteration
number; ET: Execution Time (sec.).

6 Conclusion

This paper presents a new algorithm that tries to solve partitioning in codesign
by applying the properties of ant colonies in order to overcome the drawbacks of
other meta-heuristics: early convergence of GA, cycles in taboo search, slowness
of simulated annealing The ant colonies used in this paper are a perfect example
of the mutual cooperation that can take place between technology and natural
phenomena. Inspired from the social behavior of insects, ant colonies proved to
be a good meta-heuristic that gave better results than other approaches we have
tested such as taboo search or genetic algorithms (GA). The best solution was
found in 100% of the experiments, in a shorter time than the one consumed
by GA.
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Abstract. This paper presents a new analog neuromimetic Inte-
grated Circuit. This IC includes tunable analog computation cores,
which are based on Hodgkin-Huxley formalism, calcium channel and
calcium-dependent potassium channel. The analog computation cores
compute in real-time biologically realistic models of neurons and they
are tuned by built-in digital functions. Several topologies are possible
to reproduce different neural activity like fast spiking or regular spik-
ing. Those activities are presented to illustrate the diversity of models
simulated by this IC.

1 Introduction

Since the first silicon neuron from M. Mahowald and R. Douglas in 1991 [1],
research groups have developed and used analog neuromimetic integrated cir-
cuits to address fundamental neurosciences questions. Such devices emulate and
therefore allow a detailed analysis of activity patterns of single neurons or small
networks. When based on biophysical models, the circuits provide a precise tem-
poral replica of the neurons electrical activity. In this paper, we consider devices
where the models are computed in analog mode and in real-time. The variations
of the signal are then continuously computed, while their dynamics strictly fits
the biological neurons ones. The applications of such circuits have been notably
detailed and discussed in [2], [3] and [4].

Two approaches can be identified when designing those custom circuits: in
the first one, an integrated circuit (IC) is fabricated to fit a specific model card
(set of parameters), and will be used to study a single class of neurons. In that
case, more silicon neurons can be integrated on a single chip, and applications
generally address network and synaptic modulation questions [5]. For the second
approach, the IC receives inputs to set the chosen model card. It is then used
as a simulation tool where the user can access and tune the models parameters,
building its proprietary neuron and network adapted to its application.

The IC presented here has been designed according to the second approach.
It is specified to accept a wide range of model parameters, which correspond to
realistic neurons diversity. We will show that it can precisely emulate different
types of neurons, characterized by specific activity patterns. Then we will discuss
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some applications using this IC. In particular, we will present a methodology to
study the parameters variations influence on the membrane electrical activity.

2 Biological Model

We chose to exploit the Hodgkin-Huxley formalism as the design basis for the
IC. The main advantage of this formalism is that it relies on parameters, which
are biophysically realistic, by the way of a conductance-based expression of the
neural activity. The electrical activity of a neuron is the consequence of the
ionic species diffusion through its membrane. This activity is characterized by a
membrane potential, which is the voltage difference between the outside and the
inside of the cell. Ions flow through the cell membrane through ion-specific chan-
nels, generating specific ionic currents. A reverse potential is associated to each
ionic species, according to the difference between the intracellular and extra-
cellular concentrations. The fraction of opened ion-specific channels determines
the global conductance of the membrane for that ion. This fraction results from
the interaction between time and voltage dependent activation and inactivation
processes.

The Hodgkin-Huxley formalism [6] provides a set of equations and an electri-
cal equivalent circuit (Fig. 1) that describe these conductance phenomena. The
current flowing across the membrane is integrated on the membrane capacitance,
following the electrical equation (1),

Cmem · dVmem

dt
= −

∑
Iion + Is (1)

where Vmem is the membrane potential, Cmem the membrane capacitance and
Is an eventual stimulation or synaptic current.

Iion is the current passing through one channel type, and is given by (2), in
which gmax is the maximal conductance value, m and h respectively represent
activation and inactivation term, which are the dynamic functions describing the
permeability of membrane channels to this ion. Vequi is the ion-specific reverse
potential and p, q are integers. Figure 1 displays an electrical circuit schematic
that follows the voltage-current relationships given by (1) and (2).

Iion = gmax · mp · hq · (Vmem − Vequi) (2)

Vequi Vleak

gleakgion

Iion Ileak

Cmem

V
m

em

Is

Fig. 1. Neuron electrical equivalent circuit
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According to kinetic function (3), m converges to its associated steady-state
value m∞, which is a sigmoid function of Vmem (4). The time constant for the
convergence is τm. In (4) Voffset is the activation sigmoid offset and Vslope the
activation sigmoid slope.

τm · dm

dt
= m∞ − m (3)

m∞ =
1

1 + exp(−Vmem−Voffset

Vslope
)

(4)

The inactivation variable h follows same dynamics than the activation vari-
able m, but the steady-state value calculation is done by modifying the minus
sign between brackets in a plus sign.

The Hodgkin-Huxley primary equations describe sodium, potassium and leak
channels with respectively in (2) p = 3 and q = 1; p = 4 and q = 0; p =
0 and q = 0. These channels are responsible of action potential generation.
For more complex activity patterns, like bursting or action potentials discharge
with adaptation phenomena, additional channels such as calcium and calcium-
dependent potassium have to be taken into account. The calcium channel is
described like the previous ones, but with several possible values for p and q
according with (2) [7]. To keep our initial objective and model various neural
activity, we chose p=[1;2] and q=[0;1].

The potassium channel dynamics also depends on internal variables, such as
the calcium concentration. The calcium concentration can be computed follow-
ing (5). The resulting value is introduced in (6) to evaluate the steady state
activation value. For the calcium-dependent potassium channel, we define here
p = 1 and q = 0.

τCa
d[Ca2+]

dt
= ICa2+ − [Ca2+] (5)

m∞ =
[Ca2+]

[Ca2+] + [Ca0]
· 1

1 + exp(−Vmem−Voffset

Vslope
)

(6)

3 Silicon Integration

Ionic channels calculation necessitates mathematical operations; a library of el-
ementary analog circuits computing those operations has been developed and
validated [8]. Those mathematical operations are defined in generic mode; to be
exploited them for ionic channels operations, we tune the parameters Voffset,
Vslope, τm, Vequi and gmax. We retained for our model the five channels described
earlier: leakage, sodium, potassium, calcium and calcium-dependent potassium.
Their computation circuitry is gathered in an analog electronic core. Ionic cur-
rent generators can then be represented as block diagrams of function mod-
ules. For example, with potassium dependence towards calcium considered as a
weighting of potassium steady-state value (6), the calcium-dependent potassium
block diagram is as shown in Fig. 2.
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Fig. 2. Block diagram of the IK(Ca) ionic current generator

We integrated a circuit including two analog computation cores, together with
8 synapses for each core (see Fig. 3). The different parameters are stored on-chip,
using dynamic analog memories. These analog memories, based on integrated
capacitors, were designed to store the 158 analog parameters that are necessary
for the 2 analog cores. The memory cells array is driven by an external ADC,
which sequentially refreshes the analog parameters values. This technique allows
the dynamic modification of one or more parameters, even during the running of
the simulation. One modification necessitates three refreshing cycles (≤ 5 ms).
To program the parameter memories we use another 3 bits bus (Clock, Reset
and Data) and an analog bus (Parameters values).

To define which channels are used to compute the electrical activity, the
experimenter chooses a topology before the simulation starts. This topology is
stored on built-in dynamic digital memories and programmed by another 3 bits
bus (Clock, Reset and Data).

Parameters
(158 cells)

Topology
(68 cells)

5 channels
8 synapses

5 channels
8 synapses

8 8

Synaptic driver

5 5

Topology
control

Parameter
values

Stored parameters
control3 3

Analog
variables

Analog
variables

Synaptic driver

Fig. 3. Integrated Circuit block diagram
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4 Circuit and System

The chip has been designed in full-custom mode with a BiCMOS SiGe 0.35m
technology process from austriamicrosystems (AMS) under Cadence environ-
ment. We used bipolar transistors for the integration of the steady-state value
and the computation of power functions. Figure 4 is a microphotograph of the
integrated circuit named Pamina. Ionic channels, synapses, topology and analog
memory cells can be identified on the figure. Pamina integrates around 19000
MOS transistors, 2000 bipolar transistors and 1200 passive elements; its area
is 4170 × 3480µm2. Ionic channels, synapses and analog memory cells are de-
signed in full-custom mode (71% of the components) whereas digital cells for
topology are from the austriamicrosystems’s library. Optimized analog layout
procedures, like common-centröid, have been used to implement critical struc-
tures and harden it to technological process mismatch and variations [9].

A complete computer-based system was built to exploit the IC (see Fig. 5).
The user defines the neuron characteristics he wants to model, using interface
software running on the computer. Theses characteristics include the ionic chan-
nels choice between sodium, potassium, leakage, calcium and calcium-dependent
potassium and the parameters values of each channel. These data are sent to the
IC through the analog and digital buses described in paragraph 3. The analog
computation core simulates in real-time the membrane potential, which is dig-
itized through an analog digital converter and sent back to the computer for
display and/or storage.

5 ionic current
generators

8 synaptic current
generators

5 ionic current
generators

8 synaptic current
generators

Parameters
memory cells

T
o
p
o
lo

g
y

Fig. 4. Microphotograph of the IC Pamina
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Parameters control bus

Membrane potential digitized

- Interface allowing parameters
management

- Analog computation
- Membrane potential digitization

Fig. 5. Structure of the complete simulation system

5 Results and Application

The first result presented is a simulation of the activity of a 4-conductances
neuron (sodium, potassium, leak and calcium). We can observe in Fig. 6, from
bottom to top, plots of the stimulation current, the calcium current and the
membrane voltage. Before the stimulation, the artificial neuron is silent. When
the stimulation current is applied, the neuron starts oscillations and the calcium
current increases, which produces the oscillations frequency raising. When the
stimulation pulse stops, the oscillations are maintained during a period due to
the calcium current presence. The decrease of the calcium current slows down
the oscillations frequency, which enforces the calcium current decrease. Finally,
The neuronactivity stops.

We then added to the precedent neuron model the calcium-dependent potas-
sium channel. We can observe in Fig. 7 the stimulation current (bottom plot)
and in the top the neuron electrical activity (top plot). When the stimulation
current starts, the neuron begins to oscillate and activates the calcium chan-
nel. The calcium channel activates in turn the calcium-dependent potassium
channel. The calcium conductance tends to increases the oscillation frequency
whereas the calcium-dependent potassium conductance tends to decrease it. The
calcium-dependent potassium effect finally predominant and the oscillation fre-
quency decreases, whereas the stimulation current is still present. When the
stimulation current stops, the calcium current is not strong enough to keep the
oscillations; then we observe a hyperpolarization of the membrane while the
calcium-dependent potassium channel is still activated. The calcium channel fi-
nally inactivates, inducing the inactivation of the calcium-dependent potassium
channel, and the membrane potential returns to its resting state.

The same IC has been used with a different set of model parameters, pro-
grammed through the software/hardware interface, and stored on-chip in the
analog memory cells. Whereas the initial values are fixed before the simulation
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starts, it is still possible to modify dynamically one or more values during the
simulation. This procedure is illustrated in figure 8: the oscilloscope screen cap-
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B)A) C)

Fig. 8. Effect of the dynamic modification of a parameter during a simulation

tures display the electrical activity a 4-conductances neuron, measured on the IC
output. From A) to C), the maximal conductance value for the calcium channel
(gCa max) is increased. In A) gCa max is the smallest; the neuron electrical activ-
ity stops with the stimulation. In B), C) the oscillations are maintained during
a period increasing with gCa max.

Changing the parameter value has been preformed without stopping or reset-
ting the simulation; individual parameter influence is therefore easier to visualize.
With the same principle, we can modify any other parameter. Combining both
parameter dynamic tuning capability and membrane electrical potential digiti-
zation allows us to use such a real-time system to explore more precisely the
different interplays of model parameters and neuron activity.

6 Conclusion

We presented in this paper a novel mixed neuromimetic integrated circuit. The
chip simulates in real-time electrical activities of biologically realistic neuron
models. The chip is organized around a tunable analog computation core, analog
memory cells, and a communication digital circuitry. The neuron model param-
eters values are tunable via a software/hardware interface. The results presented
illustrate the diversity of the activity pattern possibly emulated by a single IC.
Using the system, it is then possible to study in real-time the influence of param-
eters in conductance-based neuron models. Integrated synapses, not described
here, will allow the extension of the experimental principle to small networks.
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Abstract. Blind source separation(BSS) of independent sources from
their convolutive mixtures is a problem in many real-world multi-sensor
applications. However, the existing BSS architectures are more often than
not based upon software and thus not suitable for direct implementation
on hardware. In this paper, we present a new VLSI architecture for the
blind source separation of a multiple input mutiple output(MIMO) mea-
surement system. The algorithm is based on feedback network and is
highly suited for parallel processing. The implementation is designed to
operate in real time for speech signal sequences. It is systolic and easily
scalable by simple adding and connecting chips or modules. In order to
verify the proposed architecture, we have also designed and implemented
it in a hardware prototyping with Xilinx FPGAs.

1 Introduction

Blind source separation is a basic and important problem in signal processing.
BSS denotes observing mixtures of independent sources, and, by making use
of these mixture signals only and nothing else, recovering the original signals.
In the simplest form of BSS, mixtures are assumed to be linear instantaneous
mixtures of sources. The problem was formalized by Jutten and Herault [1] in
the 1980’s and many models for this problem have recently been proposed.

In this paper, we present K. Torkkola’s feedback network [2, 3] algorithm
which is capable of coping with convolutive mixtures, and T. Nomura’s extended
Herault-Jutten method [4] algorithm for learning algorithms. Then we provide
the linear systolic architecture design and implementation of an efficient BSS
method using these algorithms. The architecture consists of forward and update
processor.

We introduce in this an effficient linear systolic array architecture that is ap-
propriate for VLSI implementation. The array is highly regular, consising of iden-
tical and simple processing elements(PEs). The design very scalable and, since
these arrays can be concatenated, it is also easily extensible. We have designed
the BSS chip using a very high speed integrated circuit hardware description
language(VHDL) and fabricated Field programmable gate array(FPGA).

J. Mira and J.R. Álvarez (Eds.): IWINAC 2005, LNCS 3562, pp. 347–356, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



348 Y. Kim and H. Jeong

2 Background of the BSS Algorithm

In this section, we assume that observable signals are convolutively mixed, and
present K. Torkkola’s feedback network algorithm and T. Nomura’s extended
Herault-Jutten method. This method was used by software implementation by
Choi and Chichocki [5].

2.1 Mixing Model

Real speech signals present one example where the instantaneous mixing as-
sumption does not hold. The acoustic environment imposes a different impulse
response between each source and microphone pair. This kind of situation can
be modeled as convolved mixtures. Assume n statistically independent speech
sources s(t)= [s1(t), s2(t), . . . , sn(t)]T . There sources are convolved and mixed
in a linear medium leading to m signals measured at an array of microphones
x(t)= [x1(t), x2(t), . . . , xm(t)]T (m > n),

xi(t) =
∑

p

n∑
j=0

hij,p(t)sj(t − p), for i = 1, 2, . . . , m, (1)

where hij,p is the room impulse response between the jth source and the ith
microphone and xi(t) is the signal present at the ith microphone at time instant t.

2.2 Algorithm of Feedback Network

The feedback network algorithm was already considered in [2, 6]. Here we de-
scribe this algorithm. The feedback network whose ith output yi(t) is described
by

yi(t) = xi(t) +
L∑

p=0

n∑
j �=i

wij,p(t)yj(t − p), for i, j = 1, 2, . . . , n, (2)

where wij,p is the weight between yi(t) and yj(t−p). In compact form, the output
vector y(t) is

y(t) = x(t) +
L∑

p=0

W p(t)y(t − p),

= [I − W 0(t)]−1{x(t) +
L∑

p=1

W p(t)y(t − p)}.
(3)

The learning algorithm of weight W for instantaneous mixtures was formal-
ized by Jutten-Herault algorithm [1]. In [4], the learning algorithm was the
extended Jutten-Herault algorithm and proposed the model for blind separa-
tion where observable signals are convolutively mixed. Here we describe this
algorithm. The learning algorithm of updating W has the form

W p(t) = W p(t − 1) − ηtf(y(t))g(yT (t − p)), (4)
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where ηt > 0 is the learning rate. One can see that when the learning algorithm
achieves convergence, the correlation between f(yi(t)) and g(yj(t−p)) vanishes.
f(.) and g(.) are odd symmetric functions. In this learning algorithm, the weights
are updated based on the gradient descent method. The function f(.) is used as
the signum function and the function g(.) is used as the 1st order linear function
because the implementation is easy with the hardware.

3 Systolic Architecture for a Feedback Network

We present a parallel algorithm and architecture for the blind source separation
of a multiple input mutiple output(MIMO) measurement system. The systolic
algorithm can be easily transformed into hardware. The overall architecture of
the forward process and update is shown first and then follows the each detailed
internal structure of the processing element(PE).

3.1 Systolic Architecture for Forward Process

In this section, we introduce the architecture for forward processing of the feed-
back network. The advantage of this architecture is spatial efficiency, which
accommodates more time delays for a given limited space. The output vector of
the feedback network, y(t) is

y(t) = [I − W 0(t)]−1{x(t) +
L∑

p=1

W p(t)y(t − p)}. (5)

Let us define C(t) = [I −W 0(t)]−1 where the element of C(t) ∈ Rn×n is cij(t).

y(t) = C(t){x(t) +
L∑

p=1

W p(t)y(t − p)},

= C(t)x(t) +
L∑

p=1

Ŵ p(t)y(t − p).

(6)

Applying (6) and the above expressions to (2), we have

yi(t) =
n∑

j=1

cij(t)xj(t) +
L∑

p=1

n∑
j=1

ŵij,p(t)yj(t − p), for i = 1, 2, . . . , n. (7)

Let us define the cost of the pth processing element fi,p(t) as

fi,0(t) =0,

fi,p(t) ≡fi,p−1(t) +
n∑

j=1

ŵij,p(t)yj(t − p), for p = 1, 2, . . . , L.
(8)
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Ŵ , C
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Fig. 1. Linear systolic array for the feedback network

Combining (7) and (8), we can rewrite the output y(t) as

yi(t) =
n∑

j=1

cij(t)xj(t) + fi,L(t), for i = 1, 2, . . . , n. (9)

We have constructed a linear systolic array as shown in Fig. 1. This architec-
ture consists of L+1 PEs. The PEs have the same structure, and the architecture
has the form of a linear systolic array using simple PEs that are only conneted
with neighboring PEs and thus can be easily scalable with more identical chips.

During p = 1, 2, . . . , L, the pth PE receives three inputs yj(t − p), ŵij,p(t)
and fi,p−1(t). Also, it updates PE cost fi,p(t) by (8). The L + 1th PE calculates
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ŵn1,p
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Fig. 2. The internal structure of the processing element
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y(t) according to (9) using inputs x(t) and cij(t). In other words, we obtain the
cost of PE using recursive computation. With this method, computational com-
plexity decreases plentifully. The computational complexity for this architecture
is introduced in the last subsection.

The remaining task is to describe the internal structure of the processing
element. Fig. 2 shows the processing element. The internal structure of the pro-
cessing element consists of signal input part, weight input part, calculation part,
and cost updating part. The signal input part and weight input part consist of
the FIFO queue in Fig. 2, and take signal input y(t) and weight w(t) respectively.
The two data move just one step in each clock. As soon as all inputs return to
the queue, the next weight is loaded. When all the weights are received, the
next input begins. The calculation part receives inputs y(t) and w at two input
parts, then updates PE cost fi,p(t) according to (8). This part consists of adder,
multiplier, and register.

3.2 Systolic Architecture for the Update

This section presents the architecture that updates the weights. This architec-
ture also consists of the processing elements that operate in the same method.
We define the processing element which the used in the update as the Update
Element(UE).

Efficient implementation in systolic architecture requires a simple form of the
update rule. The learning algorithm of updating has the form

wij,p(t) = wij,p(t − 1) − ηtf(yi(t))g(yj(t − p)),
i, j = 1, 2, · · · , n, (i �= j) p = 1, 2, · · · , L.

(10)

In this architecture, the function f(.) is used as the signum function f(yi(t)) =
sign(yi(t)) and the function g(.) is used as the 1st order linear function g(yj(t)) =
yj(t) because the implementation is easy with the hardware.

Fig. 3 shows the systolic array architecture of the update process. If the
number of signals is N , then the number of rows D is (N2+N)/2 . All arrays have
the same structure and all weignts can be realized by using y(t) simultaneously.

In a row in Fig. 3, if the number of PE is L, the number of columns is 2L+1.
In other words, the architecture of the update consists of D × (2L + 1) UEs.

The cost of (d,p)th UE has the form

ud,p(t) = ud,p(t − 1) − ηtf(yi(1/2(t − p − L)))yj(1/2(t + p − L)),
d = 1, 2, · · · , D.

(11)

Fig. 4 shows the internal structure of the UE of the feedback network. The
processing element performs simple fixed computations resulting in a simple
design and low area requirements. The pth UE receives two inputs yi and yj ,
then one input becomes f(yi). The cost of UE is added to the accumulated cost
of the same processor in the previous step.
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3.3 Overall Architecture

The system configuration is shown in Fig. 5. We observe a set of signals from
an MIMO nonlinear dynamic system, where its input signals are generated from
independent sources. The minimization of spatial dependence among the input
signals results in the elimination of cross-talking in the presence of convolutively
mixing signals.

We assumed that auditory signals from n sources were mixed and reached n
microphones far from the sources. The forward process of the feedback network
algorithm uses two linear arrays of (L + 1) PEs. (nL) buffers are required for
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Fig. 5. Overall block diagram of feedback network architecture

output y(t) ,nL buffers for cost of PE, and (DnL) buffers for weight W (t). Since
each output y(t) and weight W (t) are By bits and Bw bits long, a memory with
O(nLBy + DnLBw) bits is needed. Each PE must store the partial cost of Bp

bit and thus additional O(nLBp) bits are needed. As a result, total O(nL(By +
Bp + DBy) bits are sufficient.

The update of the feedback network algorithm uses a linear array of D(2L+1)
UEs. 2D(2L + 1) buffers are required for output y(t) and D(2L + 1) buffers for
cost of UE. If UE stores the partial cost of Bu bits, total O(DL(4By + 2Bw))
bits are sufficient.

4 System Implementation and Experimental Results

The system is desiged for an FPGA(Xilinx Virtex-II XC2V8000). The entire
chip is designed with VHDL code and fully tested and error free. The following
experimental results are all based upon the VHDL simulation. The chip has been
simulated extensively using ModelSim simulation tools. It is designed to inter-
face with the PLX9656 PCI chip. The FPGA design implements the following
architecture:

– Length of delay: L=50
– The number of input source: n=4
– The buffer size for learning: 200 samples
– The learning rate: ηt = 10−6

As a performance measure, Choi and Chichocki [5] have used a signal to noise
ratio improvement,

SNRIi = 10 log10

E{(xi(k) − si(k))2}
E{(yi(k) − si(k))2} . (12)
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Fig. 6. Two original speech signals
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Fig. 7. Two mixtures of speech signals

Table 1. The experimental results of SRNI with noisy mixtures

SNR(signal to noise ratio)= 10 log10(s/n)
clean 10dB 5dB 0dB -5dB -10dB

SNRI1(dB) 2.7061 2.6225 2.4396 2.3694 1.9594 0.1486

SNRI2(dB) 4.9678 4.9605 4.7541 4.6506 3.9757 3.2470

Two different digitized speech signals s(t), as shown in Fig. 6, were used in
this simulation. The received signals x(t) collected from different microphones
and recovered signals y(t) using a feedback network are shown in Fig. 7, 8. In
this case, we obtained SNRI1 = 2.7061,and SNRI2 = 4.9678.

We have evaluted the performace of the feedback network, given noisy mix-
tures. Table. 1 shows the experimental results of SRNI with noisy mixtures. The
performance of this system measures were scanned for the SNR from -10dB to
10dB with an increment of 5dB. The system has shown good performance in
high SNR (above 0dB only).
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Fig. 8. Two recovered signals using the feedback network

5 Conclusion

In this paper, the systolic algorithm and architecture of a feedback network have
been derived and tested with VHDL code simulation. This scheme is fast and
reliable since the architectures are highly regular. In addition, the processing can
be done in real time. The full scale system can be easily obtained by the number
of PEs, and UEs. Our system has two inputs but we will extend it for N inputs.

Because the algorithms used for hardware and software impelmentation differ
significantly it will be difficult, if not impossible, to migrate software implemen-
tations directly to hardware implementations. The hardware needs different al-
gorithms for the same application in terms of performance and quality. We have
presented a fast and efficient VLSI architecture and implementation of BSS.
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Abstract. In this paper we explain the usefulness of VHDL–AMS, a
hardware description language oriented for description and simulation of
mixed signal circuits and processes. Its range of application includes not
only electrical circuits, but also combined physical domains like thermal,
mechanical or fluid dynamics. In this paper we preset two examples of
neuronal applications described and simulated using VHDL-AMS.

1 Introduction

The use of specific simulator tools for research in neurosciences and in the in-
terplay between biological and artificial systems requires a dedicated effort to
develop and debug such tools. However, for certain applications, the use of a
generic simulator can be useful because of the time expended with the simulation
tool is negligible in comparison with the time dedicated to the research itself.

In this paper we explain the usefulness of VHDL–AMS, a hardware descrip-
tion language oriented for description and simulation of mixed signal circuits
and processes. VHDL–AMS [1], specified in the standard 1076.1 is defined as
a superset of original VHDL [2]. This hardware description language is able to
model mixed signal systems and its range of application includes not only elec-
trical circuits, but also combined physical domains like thermal, mechanical or
fluid dynamics.

Modern hardware description languages support the description of both be-
havior and structure of a given process. This feature is inherited by VHDL–
AMS, which together with the capabilities above explained, makes it a general
description language rather than a hardware description one. However it scope
is limited to processes which can be modeled using lumped parameters than
can be described by ordinary differential and algebraic equations, which may
contain discontinuities. Modeling of neural mechanism frequently use this kind
of equations to describe individual cell or cell populations dynamics, as well as
to model interfaces between biological and artificial systems. This is the main
reason, VHDL–AMS can be an useful tool to describe and model such systems.

This paper is organized as follows: an introduction to the problem has been
presented in this section. Section 2 describes the fundamentals of VHDL–AMS

J. Mira and J.R. Álvarez (Eds.): IWINAC 2005, LNCS 3562, pp. 357–365, 2005.
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and its usefulness for neural modeling. In section 3 we present two examples of
neural applications. The first one is the FitzHugh–Nagumo neuron model and
the second one is the interface between a motor control system and a limb in
plain movement. Finally, section 4 summarizes the conclusions obtained from
the use of this language.

2 VHDL–AMS

This description language is limited to processes which can be modeled using
lumped parameters and than can be described by ordinary differential and alge-
braic equations, which may contain discontinuities. Basically, each model is de-
scribed using a pair entity–architecture. The entity defines the interfaces between
this model and the environment and the architecture describes its functionality,
either in a structural way or in a behavioral fashion.

Interfaces can be generic or ports. Generic interfaces are used to define cer-
tain parameters of an architecture which do not change during simulation. For
instance gain in an amplifier or capacity in a membrane cell. Port interfaces are
the interfaces themselves. They are used to define the links between the model
or architecture and the environment. In an amplifier, the input and the output
are port interfaces, and in a biological cell, potassium and sodium channels could
be defined as such interfaces.

There are several kind of port interfaces, but those called terminals are spe-
cially recommended when describing systems with conservative semantics, like
electrical systems following Kirchoff’s laws. This feature is interesting when de-
scribing electrical interaction between a cell membrane and the environment.
Associated to a terminal we can find branch quantities, which represent the un-
knowns in the equations describing the system. These quantities can be across
quantities or through quantities. The first ones are used to express effort like
effects, like voltage, pressure or temperature while the second ones represent a
flow like effect like current, fluid flow or heat flow.

Once an entity has been defined, next step is the architecture description.
Here, there are two options: structural descriptions or behavioral descriptions.
First ones simply describe links between models in a lower hierarchy level. Sec-
ond ones do not imply any knowledge about a model structure, but allow pow-
erful resources to describe complex processes behavior. In this case, differen-
tial equations and algebraic equations are expressed using simple simultaneous
statements, which are all computed and simulated in a concurrent way with
independence of the position in which they appear in the code.

VHDL–AMS includes additional types of simultaneous statement, used to
define conditional clauses. For instance, a simultaneous if statement is used
to evaluate sets of other simultaneous statements depending on its conditional
clause. An important statement is the break statement used to define disconti-
nuities to the analog solver when performing simulations with such limitations.
These sentences are used also to set initial conditions for ordinary differential
equations.
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3 Examples

We are going to show the capability of VHDL–AMS to model neural applica-
tions using two examples. The first one describes the neuron model proposed
by FitzHugh–Nagumo and the second one a simplified motor control system
connected to a limb in horizontal movement.

3.1 FitzHugh–Nagumo Model

FitzHugh–Nagumo model [3] describes dynamic behavior of a cell membrane
excited by an input current I. This model, which is shown in figure 1 is in fact
a simplification of Hodgkin–Huxley [4] model and comprises two ionic channels,
for sodium and potassium, a membrane capacity, and a leakage current.

Cm
GKGNa

EKENa

I

IC INa IK

Membrane

Fig. 1. Fitz–Hugh Nagumo model

In this figure, Cm represents the cell membrane, gK and gNa identify the
ionic channel conductances and IL defines the leakage current. Equations which
model this circuit are shown below:

C
du

dt
= I(t) − IK − INa (1)

dIK

dt
= V − RIK + VO (2)

The neuron is modeled using a pair entity–architecture, as shown below. The
entity describes the interface between the neuron and the environment, which
in this case is the cell membrane. This membrane has a certain potential and
through it flows a given current. The membrane is thus modeled using a terminal
of nature electrical:

LIBRARY IEEE;
USE ieee.math_real.all;
USE ieee.electrical_systems.all;
ENTITY nagumo IS
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PORT (terminal membrana: electrical);
END ENTITY nagumo;

ARCHITECTURE behavior OF nagumo IS
QUANTITY v ACROSS i TROUGH membrane TO electrical_ref;
QUANTITY INa,IK:real;
CONSTANT R: real := 0.8;
CONSTANT L: real := 1.0;
CONSTANT C: real := 0.1;
CONSTANT V0: real := 0.7;

BEGIN
C*v’dot==(-INa-IK+i);
L*IK’dot==V+V0-R*IK;
INa==v**3.0-v;

END ARCHITECTURE behavior;

In the code above, the architecture describes the behavior of the cell itself.
First we declare two quantities, v and i which represent the membrane voltage
and membrane current. Two additional quantities of type real are declared to
model current in the potassium channel and in the sodium channel. Finally, four
constants are defined, to implement the resistance, inductance, capacity and
threshold voltage of the cell. Figure 2 shows this VHDL–AMS model.

v

i

Entity nagumo

Terminal membrane

di/dt = ...
dv/dt = ...
. . .

Architecture behavior

Fig. 2. FitzHugh–Nagumo VHDL–AMS model

For the modeling itself, we have used three simple simultaneous statements,
one for each equation. The first one describes evolution of membrane voltage in
time and the second one describes variation of current in the potassium channel.
The last statement calculates the value of current in the sodium channel. Figure
3 shows a simulation of the Fitz–Hugh Nagumo model.

In this simulation we have excited the neuron with a current pulse train. The
voltage in the membrane obtained corresponds to equations (1) and (2).

3.2 Motor Control Model

In this example we explain the modeling of a motor control model [5]. This
model comprises a limb in planar horizontal movement, two agonist muscles
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Fig. 3. Simulation of FitzHugh–Nagumo model

θ

muscle

M2 M1

Motorneuron

length

Fig. 4. Motor–control model

and two agonist motorneurons. Figure 4 shows the general structure of a limb
controlled by a pair of agonist muscles. Equations which drive limb behavior are
summarized below. Firstly, the dynamics of the limb is defined by:

d2

dt2
θ =

1
Im

(F1 − F2 − n
d

dt
θ) (3)

where θ is the rotation angle, Im is the inertia of the limb, n represents dynamic
friction and Fi are forces coming from agonist muscles.

For the calculation of muscles length we use a simple trigonometric relation,
given by:

L1 =
√

cos2θ + (20 − sinθ)2 (4)

L2 =
√

cos2θ + (20 + sinθ)2 (5)
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Muscle forces are calculated as:

Fi = k ∗ (Li + Ci − L0) (6)

where k is a constant and L0 is the resting length of the muscle. Ci represents
the contraction state of the muscle, and is defined by:

d

dt
Ci = (1 − Ci)Mi − Ci − [Fi − 1]+ (7)

In this expression, [ ]+ means the maximum between [ ] and cero. Mi is the
activation value of the motorneuron, given by:

d

dt
Mi = (1 − Mi) ∗ Ai − (Mi + 1, 6) ∗ 0, 2 (8)

In this model we can make a difference between the limb itself, including the pair
of agonist muscles, and the neuronal circuitry. So, we can assign a VHDL–AMS
entity for each one of these submodels.

VHDL–AMS description of the motorneuron is shown below:

ENTITY motorneuron IS
PORT (terminal axon,input: electrical);

END ENTITY motorneuron;

architecture complete of motorneurona is
quantity activation across I through axon to electrical_ref;
quantity excitation across entrada to electrical_ref;

BEGIN
activation’dot==(B-activation)*activation

-(excitation+1.6)*0.2;
END architecture complete;

The entity includes a port whose interfaces are two terminals of electrical
nature: the input to the neuron and the axon (output). The architecture models
cell behavior by means of a simple simultaneous statement which describes a
ordinary differential equation. This equation drives motorneuron dynamic be-
havior. Description of the limb contains again an entity and an architecture. The
entity is described below:

ENTITY limb IS
PORT (terminal insertion1,insertion2: electrical;

terminal elbow: rotational);
END ENTITY limb;

This entity contains a port interface to which there are associated three ter-
minals.The first ones are referred to muscle to bone insertion and the third one
models the elbow. The architecture is:
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ARCHITECTURE complete OF limb IS
QUANTITY omega ACROSS torque THROUGH elbow TO rotational_ref;
QUANTITY M1 ACROSS incision1 TO electrical_ref;
QUANTITY M2 ACROSS incision2 TO electrical_ref;
QUANTITY theta: real:=0.0;
QUANTITY omega_ini: real:=0.0;
QUANTITY force1, force2: real:=0.0;
QUANTITY length1, length2: real:=0.0;
QUANTITY contraction1, contraction2: real:=0.0;
CONSTANT IM: real := 1.00;
CONSTANT n: real := 1.00;
CONSTANT K: real := 1.00;

BEGIN
omega’dot*IM==force1-force2-n*omega;
theta’dot==omega;
torque==0.0;
length1==sqrt( (cos(theta))**2.0 + (20.0-sin(theta))**2.0 );
length2==sqrt( (cos(theta))**2.0+(20.0+sin(theta))**2.0);
force1==K*(length1-20.025+contraction1);
force2==K*(length2-20.025+contraction2);
IF force1>1.0 USE

contraction1’dot==((1.0-contraction1)*M1-contraction1)
-(force1-1.0);

ELSE
contraction1’dot==((1.0-contraction1)*M1-contraction1);

END USE;
IF force2>1.0 USE

contraction2’dot==((1.0-contraction2)*M2-contraction2)
-(force2-1.0);

ELSE
contraction2’dot==((1.0-contraction2)*M2-contraction2);

END USE;
END ARCHITECTURE COMPLETE;

The architecture contains the quantities and constant declarations and the
list of statements which model the system. We have used seven simple simulta-
neous statements to describe limb behavior. Two first statements describe limb
dynamics, defined in (3) . Then, sentences four and five calculate muscle length,
while sentences six and seven calculate muscle force, described in equations (5)
to (6).

The if clauses contain sentences which model the muscle contractile state
(7). These clauses are called simultaneous if statements and are the type of
conditional statements explained in section 2. When simulating this system, if
the condition in the if statement is true, the simultaneous statement specified
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Fig. 5. Simulation of motor control model

after reserved word use is evaluated. If condition is false, then the statement
after else is computed.

Figure 5 shows the simulation of the motor control model. For this simulation
we have used two voltage sources as excitation for both motorneurons.

Simulation shows the evolution of the motor–control system for an asym-
metric excitation of 1.0 and 0.0 units at 1 s simulation time. The excitation has
been applied to both motorneurons through their interface port ”input”. The
motorneuron activation states, are driven through interface port ”axon”, which
are linked to limb port interface ”insertion”. This produces an initial force in
muscle 1 which starts rotation in the elbow. Then, muscles length is modified,
and a reaction force appears in muscle 2. System stabilizes approximately after
nine seconds.

4 Conclusions

We have presented a tool for description and modeling of neural systems able to
be described in terms of ordinary differential and algebraic equations. We have
proved the utility of VHDL–AMS describing two types of biological systems: a
membrane cell and a motor–control system. In both cases, description has been
done in a clear and fast way, focusing our efforts in the systems rather than
in programming specific code for such simulations. Although this is a general
purpose tool, oriented to hardware description modeling, VHDL–AMS language
includes resources to describe systems with enough flexibility and accuracy to
be used for biologically inspired systems and processes.
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Abstract. The Jet Propulsion Laboratory (JPL) performs research in
fault tolerant, long life, and space survivable electronics for the National
Aeronautics and Space Administration (NASA). With that focus, JPL
has been involved in Evolvable Hardware (EHW) technology research
for the past several years. We have advanced the technology not only by
simulation and evolution experiments, but also by designing, fabricat-
ing, and evolving a variety of transistor-based analog and digital circuits
at the chip level. EHW refers to self-configuration of electronic hard-
ware by evolutionary/genetic search mechanisms, thereby maintaining
existing functionality in the presence of degradations due to aging, tem-
perature, and radiation. In addition, EHW has the capability to recon-
figure itself for new functionality when required for mission changes or
encountered opportunities. Evolution experiments are performed using a
genetic algorithm running on a DSP as the reconfiguration mechanism
and controlling the evolvable hardware mounted on a self-contained cir-
cuit board. Rapid reconfiguration allows convergence to circuit solutions
in the order of seconds. The paper illustrates hardware evolution results
of electronic circuits and their ability to perform under 280C temperature
as well as radiations of up to 175kRad.

1 Introduction

The Jet Propulsion Laboratory (JPL) performs research in fault tolerant, long
life, and space survivable electronics for the National Aeronautics and Space
Administration (NASA). JPL has been involved in Evolvable Hardware (EHW)
technology research for the past several years. EHW can bring some key benefits
to spacecraft survivability, adaptation to new mission requirements and mission
reliability. The idea behind evolutionary circuit synthesis/design and EHW is to
employ a genetic search/optimization algorithm that operates in the space of all
possible circuits and determines solution circuits that satisfy imposed specifica-
tions, including target functional response, size, speed, power, etc. In a broader
sense, EHW refers to various forms of hardware from sensors and antennas to
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complete evolvable space systems that could adapt to changing environments
and, moreover, increase their performance during their operational lifetime. In a
narrower sense here, EHW refers to self-reconfiguration of transistor-level elec-
tronic hardware by evolutionary/genetic reconfiguration mechanisms. EHW can
help preserve existing circuit functionalities, in conditions where hardware is sub-
ject to faults, aging, temperature drifts and high-energy radiation damage. The
environmental conditions, in particular the extreme temperatures and radiation
effects, can have catastrophic impacts on the spacecraft. Interstellar missions
or extended missions to other planets in our solar system with lifetimes in ex-
cess of 50 years are great challenges for on-board electronics considering the
fact that presently, all commercial devices are designed for at most a 10-year
lifespan. Further, new functions can be generated when needed (more precisely,
new hardware configurations can be synthesized to provide required functional-
ity). Finally, EHW and reconfigurable electronics provide additional protection
against design mistakes that may be found after launch. Design errors can be
circumvented during the mission either by human or evolutionary driven cir-
cuit reconfiguration. One clear example of a space exploration area where EHW
can directly provide benefits is the extreme-environment operation of electronics
for in-situ planetary exploration. It may require electronics capable of operat-
ing at low temperatures of -220C for Neptune or moon, (-235C for Titan and
Pluto) and also high temperatures, such as above 470C needed for operation
on the surface of Venus. Terrestrial applications may include combustion sys-
tems, well logging, nuclear reactors, and automotive industry requiring high
temperature operation and dense electronic packages. In this paper we propose
the use of reconfigurable chips, which allow for a large number of topologies
to be programmed in-situ, allowing adaptation to extreme temperatures and
ionizing radiation. The experiments presented here illustrate hardware recovery
from degradation due to extreme temperatures and radiation environments. A
2nd generation reconfigurable chip, the Field Programmable Transistor Array
(FPTA-2) integrated circuit, developed at JPL, is used in these experiments.
We separately subjected the chips to high temperatures and ionizing radiations
using JPL facilities. Measurement results show that the original functionality
of some of the evolved circuits, such as half-wave rectifiers and low-pass filters,
could be recovered by again using the Evolutionary Algorithm that altered the
circuit topologies to lead to the desired solutions. The Evolutionary Algorithms
thus control the state of about 1500 switches, which alter the circuit topol-
ogy. Using a population of about 500 candidate circuits and after running the
Evolutionary process for about 200 generations, the desired functionality was
recovered.

The paper is organized as follows. Section 2 reviews main aspects of EHW
including reconfigurable devices and reconfiguration mechanisms for hardware
evolution on a EHW testbed. Section 3 describes experiments on the evolu-
tionary design of analog circuits. Section 4 describes experiments on electronic
survivability through evolution, including evolutionary recovery at extreme tem-
peratures and ionizing radiation. Concluding remarks are given in Section 5.
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2 Evolvable Hardware

Presently, the evolutionary search for a circuit solution is performed either by
software simulations [1] or directly in hardware on reconfigurable chips [2]. How-
ever, software simulations take too long for practical purposes, since the simula-
tion time for one circuit is multiplied by the large number of evaluations required
by evolutionary algorithms. In addition, the resulting circuit may not be easily
implemented in hardware, unless implementation constraints are imposed dur-
ing evolution. Hardware evaluations can reduce by orders of magnitude the time
to get the response of a candidate circuit, potentially reducing the evolution
time from days to seconds [2]. Hardware evaluations commonly use commer-
cial re-configurable devices, such as Field Programmable Gate Arrays (FPGA)
or Field Programmable Analog Arrays (FPAA)[3]. These devices, designed for
several applications other than EHW, lack evolution-oriented features, and in
particular, the analog ones are sub-optimal for EHW applications.

2.1 Evolution-Oriented Reconfigurable Architectures

Many important aspects of evolution-oriented reconfigurable architectures
(EORA) must be considered to best support the EHW. The granularity of the
programmable chip is an important feature. A first limitation of commercial
FPGAs and FPAAs is their coarse granularity. From the EHW perspective, it
is interesting to have programmable granularity, allowing the sampling of novel
architectures together with the possibility of implementing conventional archi-
tectures. The optimal choice of elementary block type and granularity is task
dependent. From the point of view of experimental work in EHW, it appears
that the reconfigurable hardware based on elements of the lowest level of gran-
ularity is a good choice to build. Virtual higher-level building blocks can be
considered by imposing programming constraints. EORA should also be trans-
parent, thereby allowing analysis and simulation of the evolved circuits. They
should also be robust enough not to be damaged by any bit-string configuration
existent in the search space, potentially sampled by evolution. Finally EORA
should allow evolution of both analog and digital functions.

With the granularity in mind, Field Programmable Transistor Array (FPTAs)
chips were designed at JPL and particularly targeted for EHW experiments. The
first two versions of the FPTA (FPTA-0 and FPTA-1) relied on a cell with 8
transistors interconnected by 24 switches [3]. They were used to demonstrate
intrinsic evolution of a variety of analog and digital circuits, including logical
gates, trans-conductance amplifiers, computational circuits, etc. The newer ver-
sion, FPTA2, is a second-generation reconfigurable mixed-signal chip consisting
of an array of cells, each with 14 transistors connected through 44 switches. The
chip is able to map different building blocks for analog processing, such as two-
and three-stage OpAmps, logarithmic photo-detectors, or Gaussian computa-
tional circuits. Figure 1 shows the details of the FPTA-2 cell. As shown, these
cells can be programmed at the transistor level. The chip architecture consists
of an 8x8 matrix of re-configurable cells. The chip can receive 96 analog/digital
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Fig. 1. FPTA-2 cell topology with transistors M1 thru M14, connected through 44
switches. The chip has an 8x8 array of cells

inputs and provide 64 analog/digital outputs. Each cell is programmed through
a 16-bit data bus/9-bit address bus control logic that provides an addressing
mechanism to download the bit-string of each cell. A total of 5000 bits is used
to program the whole chip.

2.2 Evolutionary Reconfiguration Mechanisms

The main steps of evolutionary synthesis are illustrated in Figure 2. The ge-
netic search in EHW is tightly coupled with a coded representation that asso-
ciates each circuit to a ”genetic code” or chromosome. The chromosomes are
converted into circuit models for evaluation in SW (extrinsic evolution) or into
control bitstrings downloaded to programmable hardware (intrinsic evolution).
The simplest representation of a chromosome is a binary string, a succession

Evolutionary Algorithm 
Genetic search  on a population of 
chromosomes 
•  select the best designs from a population 
•  reproduce them with some variation 
•  iterate until the performance goal is

reached. 

Response evaluation 
 and fitness assessment

Target 
response 

Chromosomes 

Reconfigurable 
HW 

10110011010 
01110101101 

Control 
bitstrings

Conversion 
to a circuit 
description 

Circuit
responses 

     Models 
 of circuits 

Simulator 
(e.g., SPICE)

Intrinsic 
Evolution 

Extrinsic 
Evolution 

Fig. 2. Main steps for the evolutionary synthesis of electronic circuits showing extrinsic
and intrinsic evolution paths
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of 0s and 1s that encode a circuit. Each bit of the binary sequence refers to a
particular switch location. The status of the switches (ON or OFF) determines
a circuit topology and consequently a specific response. Thus, the topology can
be considered as a function of switch states, and can be represented by a binary
sequence, such as ”1011”, where a ’1’ is associated to a switch turned ON and a
’0’ to a switch turned OFF. More details can be found in [3].

2.3 Evolvable Hardware Testbed

A Stand-Alone Board Level Evolvable System (SABLES), developed for au-
tonomous portable experiments, is a stand-alone platform integrating the FPTA-
2 and a digital signal processor (DSP) chip that implements the Evolutionary
Programming (EP) code. The system is stand-alone and is only connected to
the PC for the purpose of receiving specifications and communicating back the
results of evolution for analysis.

The evolutionary algorithm, implemented in a DSP that directly controlled
the FPTA-2 provided with fast internal communication ensured by a 32-bit bus
operating at 7.5MHz. Details of the EP were presented in Ref [2]. Over four
orders of magnitude speed-up of evolution was obtained on the FPTA chip com-
pared to SPICE simulations on a Pentium processor (this performance figure
was obtained for a circuit with approximately 100 transistors; the speed-up ad-
vantage increases with the size of the circuit).

3 Evolution Experiments of Analog Circuits

The first demonstration of SABLES was reported in Ref. [2]. A half-wave recti-
fier circuit was evolved in about 20 seconds after processing a population of 100
individuals running for 200 generations. The testing of candidate circuits was

 

  a)    b)   
  

  c)     d)   

Fig. 3. Evolution of a halfwave rectifier showing the response of the best individual
of generation a) 1, b) 5, c) 50 and finally the solution at generation d) 82. The final
solution, which had a fitness value less than 4500, is illustrated on the right
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performed for an excitation input of 2kHz sine wave of amplitude 2V. A com-
puted rectified waveform of this signal was considered as the target. The fitness
function rewarded those individuals exhibiting behavior closer to target (using
a simple sum of differences between the response of a circuit and target) and
penalized those farther from it. In this experiment only two cells of the FPTA
were allocated. Figure 3 displays snapshots of evolution in progress, illustrating
the response of the best individual in the population over a set of generations.
Fig. 3 a) shows the response of the best individual of the initial population,
while the subsequent ones (Fig. b, c, and d) show the best after 5, 50 and 82
generations respectively. The final solution response is shown on the right. The
evolution of other analog circuits is shown in [4].

4 Experiments Under Extreme Environment

4.1 Experimental Testbeds

Testbed for evolution at high temperatures: A high temperature testbed was
built to achieve temperatures exceeding 350C on the die of the FPTA-2 while
staying below 280C on the package. It was necessary to keep the package tem-
perature below 280C so as not to destroy the interconnects and preserve pack-
age integrity. Die temperatures were kept below 400C to make sure die attach
epoxy does not soften and that the crystal structure of the aluminum core does
not degrade. To achieve these high temperatures the testbed includes an Air
Torch system. The Air Torch forces out hot compressed air through a small hole
within a temperature-resistant ceramic, protecting the chip. The temperatures
were measured by attaching thermocouples to the die and the package.

High-energy electron radiation chamber: In the case of the radiation experi-
ments, the radiation source used was a high-energy (1MeV) electron beam ob-
tained using a Dynamitron accelerator. The electrons are accelerated in a small
vacuum chamber with a beam diameter of 8”. The flux in the chamber was
4x109 [electrons/(sec-cm2)], which is around 300 rad/sec. Below we describe
experiments for evolutionary recovery of the functionality of the following cir-
cuits: (1) Half-wave rectifier at 280C temperature; (2) Low-pass filter at 230C
temperature; and (3) Half-wave rectifier at 175kRads.

4.2 Half-Wave Rectifier on FPTA-2 at 280C

The objective of this experiment was to recover functionality of a half wave
rectifier for a 2kHz sine wave of amplitude 2V using only two cells of the FPTA-
2 at 280C. The fitness function does a simple sum of error between the target
function and the output from the FPTA. The input was a 2kHz excitation sine
wave of 2V amplitude, while the target waveform was the rectified sine wave. The
fitness function rewarded those individuals exhibiting behavior closer to target
(by using a sum of differences between the response of a circuit and the target)
and penalized those farther from it. The output must follow the input during the
positive half-cycle but stay constant at a level half-way between the rails (1V)
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Output 

Input Input

Output 

Fig. 4. Input and output waves of the half-wave rectifier. On the left we show the
response of the circuit evolved at 27C. On the right we show the degraded response of
the same circuit when the temperature was increased to 280C

 

Temperature 280C 
Recovery by Evolution 

Output

Input

Fig. 5. The response shows the recovery for the half-wave rectifier circuit at 280C
following successful evolution

during the negative half-cycle. After evaluation of 100 individuals, they were
sorted according to fitness and a 9% (elite percentage) portion was set aside,
while the remaining individuals underwent crossover (70% rate), (either among
themselves or with an individual from the elite), followed by mutation (4% rate).
The entire population was then reevaluated. In Figure 4 the left graph depicts
response of the evolved circuit at room temperature whereas the right graph
shows degraded response at high temperature. Figure 5 shows the response of
circuit obtained by running evolution at 280C, whereby we can see that the
functionality has been recovered.

4.3 Low-Pass Filter on FPTA-2 at 230C

The objective of this experiment was to recover the functionality of a low-pass
filter using ten cells of the FPTA-2 chip. The fitness function given below per-
forms a sum of errors between the target function and the output from the FPTA
in the frequency domain.

Given two tones at 1kHz and 10kHz, the circuit after evolution is to have at
the output only the lowest frequency tone (1kHz). This evolved circuit demon-
strated that the FPTA-2 is able to recover the functionality of the active filter
circuit with some gain at 230C. Figure 6 shows the response of the evolved filter
at room temperature and degradation at 230C. Figure 7 shows the time response
of the recovered circuit evolved at 230C.
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Evolved low Pass at 27oC

Input 

Output (amplitude[pp]=0.8V)

Input 

Output(amplitude[pp]=0.5V)

Low Pass evolved at 27C: at 230oC 

Fig. 6. Low-pass filter response. The graph displays the input and output signals in
the time domain when the FPTA-2 was used for evolution at room temperature (left)
and at 230C temperature (right)

Input

Output (amplitude[pp]=0.9V) 

Recovered by Evolution at 230oC

Fig. 7. Recovered Low Pass Filter at 230C

At room temperature, the originally evolved circuit provided a gain of 3dB at
1kHz and a roll-off of -14dB/dec. When the temperature was increased to 230C,
the roll-off went to -4dB/dec and the gain at 1kHz fell to -12dB. In the recovered
circuit at high temperature the gain at 1kHz increased back to 1dB and the roll-
off went to -7dB/dec. Therefore the evolved solution at high temperature was
able to restore the gain and to partially restore the roll-off.

4.4 Half Wave Rectifier at 175krads

This experiment was to evaluate the recovery of a half-wave rectifier after the
FPTA-2 was subjected to radiation. Figure 8(a) illustrates the response of a
previously evolved rectifier after the chip was exposed to a radiation dose of 50
krads. It can be observed that the circuit response was not affected by radia-
tion. After exposure to radiation of up to 175Krad the rectifier malfunctions as
the output response is identical to that of the input as shown in Figure 8(b).
When the evolutionary mechanism was activated, the correct output response
was recovered and retained as shown in Figure 8(c).
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Fig. 8. Response of the Rectifier circuit at (a) 50kRads, (b) after being radiated to
175kRads resulting in deterioration through loss of rectification, followed by (c) recov-
ery through Evolution

5 Conclusions

The above experiments illustrate the power of EHW to synthesize new functions
and to recover degraded functionality due to faults or extreme temperatures. A
mechanism for adapting a mixed analog reconfigurable platform for high tem-
perature and radiation induced faults was presented. Different experiments were
carried out which exercised the reconfigurable device up to 280C and 175Krad
radiation dosages demonstrating that the technique is able to recover circuit
functionality such as those of rectifiers and filters.
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Abstract. The explosive growth of the traffic in computer systems has
made it clear that traditional control techniques are not adequate to pro-
vide the system users fast access to network resources and prevent unfair
uses. In this paper, we present a reconfigurable digital hardware im-
plementation of a specific neural model for intrusion detection. It uses a
specific vector of characterization of the network packages (intrusion vec-
tor) which is starting from information obtained during the access intent.
This vector will be treated by the system. Our approach is adaptative
and to detecting these intrusions by using a complex artificial intelligence
method known as multilayer perceptron. The implementation have been
developed and tested into a reconfigurable hardware (FPGA) for em-
bedded systems. Finally, the Intrusion detection system was tested in a
real-world simulation to gauge its effectiveness and real-time response.

1 Introduction

Intrusion Dection System (IDS) is an important component of defensive measures
protecting computer systems. It has been an active field of research for about
two decades [12]. When an IDS is properly deployed, it can provide warnings
indicating that a system is under attack. It can help users alter their installa-
tion’s defensive posture to increase resistance to attack. In addition, and IDS can
serve to confirm secure configuration and operation of other security mechanism
such us firewalls. So, IDS’s objective is to characterize attack manifestation to
positively identify all true attacks without falsely identifying any attacks [13].

Accompanying our growing dependency on network-based computer systems
is an increased importance of protecting our information systems. Intrusion de-
tection, the process of identifying and responding to malicious activity targeted
at computing and networking resources [11], is a critical component of infras-
tructure protection mechanisms. A natural tendency in developing an IDS is
trying to maximize its technical effectiveness. This often translates into IDS
vendors attempting to use brute force to correctly detect a larger spectrum of
intrusions than their competitors. However, the goal of catching all attacks has
proved to be a major technical challenge. After more than two decades of re-
search and development efforts, the leading IDS’s still have marginal detection
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c© Springer-Verlag Berlin Heidelberg 2005



An Electronic Reconfigurable Neural Architecture for Intrusion Detection 377

rates and high false alarm rates, especially in the face of stealthy or novel in-
trusions. This goal is also impractical for IDS deployment, as the constraints
on time (i.e., processing speed) and resources (both human and computer) may
become overwhelmingly restrictive. An IDS usually performs passive monitoring
of network or system activities rather than active filtering (as is the case with
Firewalls). It is essential for an IDS to keep up with the throughput of the data
stream that it monitors so that intrusions can be detected in a timely manner.
A real-time IDS can thus become vulnerable to overload attacks [9]. In such an
attack, the attacker first directs a huge amount of malicious traffic at the IDS (or
some machine it is monitoring) to the point that it can no longer track all data
necessary to detect every intrusion. The attacker can then successfully execute
the intended intrusion, which the IDS will fail to detect. Similarly, an incident
response team can be overloaded by intrusion reports and may be forced to raise
detection and response thresholds [10], resulting in real attacks being ignored. In
such a situation, focusing limited resources on the most damaging intrusions is
a more beneficial and effective approach. A very important but often neglected
facet of intrusion detection is its cost-effectiveness, or cost-benefit trade-off.

Artificial neural networks (ANNs) are a form of artificial intelligence, which
have proven useful in different areas of application, such as pattern recognition
[1] and function approximation/prediction. Multilayer Perceptron is an artificial
neural model for training networks of simple neuron like units connected by
adjustable weights to perform arbitrary input/output mappings. Patterns are
presented by setting the activation set of “input layer” units. Activation flows
forward to units in hidden layers via adjustable weights, eventually reaching the
output layer. A supervised training is necessary before the use of the neural
network. A highly popular learning algorithm called back-propagation is used to
train this neural network model (Hayking, 1999). One trained, the perceptron
can be used to solve classification of the traffic packets and detect intruder access.

The proposal to palliate the main limitation of the traditional IDS and their
inability to recognize attacks lightly modified regarding the patterns with those
that carries out the comparisons, it is the one of using neural nets . By means
of this proposal it is sought to prove if by means of using a neural net, it is
possible to carry out the distinction among packages that represent normal flow
in a computers net, and packages that represent attacks. Concretely we will carry
out the experimentation with a multilayer perceptron.

Finally, we use reconfigurable architecture (FPGA) to implementation of the
final system so we can reach fast response in high traffic conditions and real-time
response. An FPGA is a programmable device in which the final logic structure
can be directly configured by the end user for a variety of applications. In its
simplest form an FPGA consist of an array of uncommitted elements that can be
programmed or interconnected according to a user’s specification. In our system
we use a Xilinx V1000 FPGA to implement the final neural IDS.

The research is supported by the project “Design of a reconfigurable archi-
tectures and Mapping Algorithms for vision” (CICYT: 2001-2004).
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2 Intrusion Detection Systems

As malicious intrusions into computer systems have become a growing problem,
the need for accurately detecting these intrusions has risen. Many methods for
detecting malicious intruders (firewalls, password protected systems) currently
exist. However, these traditional methods are becoming increasingly vulnerable
and inefficient due to their inherent problems. As a result, new methods for
intrusion detection that are not hampered by vulnerability and inefficiency must
be developed (Eskin et al, 2001). This research sought to design such a detection
method through the use of a multilayer perceptron algorithm.

Traditional systems in place for intrusion detection primarily use a method
known as “fingerprinting” to identify malicious users. Fingerprinting requires the
compilation of the unique traits of every type of attack on a computer system. Each
generated fingerprint is first added to the attack database of a detection system
and then compared to all subsequent user connections for classification as either
a malicious or normal connection (Lane, 1998). This trait compilation is typically
accomplished through human analysis by the creators of the system. The result-
ing fingerprint updates must then be manually installed on each individual system
in use (Eskin,2001; Stolfo, 2000). There are several inherent problems with this
method: a system must first be compromised by an attack for a fingerprint to be
generated; a separate fingerprint is required for each different type of attack; and
as the number of fingerprints grows, more computer resources must be allocated to
detection, degrading overall system performance. In addition, to gain protection
from new attacks, there is a significant waiting period from the time a new attack
is first reported to the time that a fingerprint is generated. During this waiting
period, a system is left vulnerable to the new attack and may be compromised.
Moreover, in extreme scenarios, a fingerprint-based system may be unable to allo-
cate all required resources to detect attacks because of the number of fingerprints,
resulting in undetected attacks (Lee et al, 2001).

As an alternate solution for protecting computers from malicious users, a
model-based Intrusion Detection System (IDS) may be used. Instead of using a
fingerprinting method of user classification, an IDS compares learned user char-
acteristics from an empirical behavioural model to all users of a system. User
behavior is generally defined as the set of objective characteristics of a connec-
tion between a client (e.g., a user’s computer) and a server. Using a generalized
behavioural model is theoretically more accurate, efficient, and easier to main-
tain than a fingerprinting system. This method of detection eliminates the need
for an attack to be previously known to be detected because malicious behavior
is different from normal behavior by nature (Sinclair et al, 1999). Also, a model
based system uses a constant amount of computer resources per user, drastically
reducing the possibility of depleting available resources. Furthermore, while ac-
tual attack types by malicious users may vary widely, a model-based IDS does
not require the constant updates typical of fingerprint-based systems because
the characteristics of any attack against a system will not significantly change
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throughout the lifetime of the system because attacks are inherently different
from normal behavior (Eskin et al, 2001; Lee et al, 2001; Sinclair et al, 1999).
In previous research, the options for model generation have been to base it on
normal users or to base it on malicious users (Eskin et al, 2001). Models based on
normal users, known as Anomaly Detection models, use an empirical behavioural
model of a normal user and classify any computer activity that does not fit
this model as malicious. Models based on malicious users are known as Misuse
Detection models. These models look for a pattern of malicious behavior, and
behavior that fits this model is classified as malicious (Eskin et al, 2001). In this
research, neither model was explicitly specified, allowing the genetic algorithm
to generate the best model. An Intrusion Detection System must first be able to
detect malicious user connections. Our proposal combines both methods.

2.1 Intrusion Vector

The first thing that it is necessary to think about when training a net neuronal,
is what data they will contain the samples that it uses as entrances. This be-
longs since the most important decision that can take, to her it will depend in
great measure the distinction capacity that it can acquire the net neuronal once
concluded the training. For the election of these data, they have taken as ref-
erence the data that a traditional IDS uses, concretely ’Snort’, the one which,
apart from using numerous data characteristic of the packages TCP, UDP, or
ICMP, it also considers the content of the own package. It is since something
that outlines a serious problem, in a principle that this was the most important
fact to distinguish among a dangerous inoffensive and other package, but it is
very complicated to introduce the content of the data of the package in a net
neuronal. Finally it has been opted to take out four characteristics of the same
one in form statistic of probability of the four more frequent characters which
appear in it. The IVD components are showed in Table 1.

Table 1. Intrusion Vector Data (IVD)

Head IP TCP UDP

Port origin Reserved Flag 1 Size data + head

Port destination Reserved Flag 2 ICMP

Protocol (TCP/UDP/ICMP) Urgent Pointer Flag OR type

Type of Service (COUGH) Acknowledge Flag TO Code

Size of the Head (Iplen) Push Function Flag P O. Protocol

Total Size (Dmglen) Reset Connection Flag R DATA CODE

Reserved Bit (RB) Syncronize Flag S Most frecuent

Don’t Fragment Bit (DF) END Flag F Second more frecuent

Fragment Bit Lives (MF) Size of Window (Win) Third more frecuent

Number of options IP Size Head (Tcplen) Fourth more frecuent

Number of options
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3 The Multilayer Perceptron Model

The most popular Neural Network is the Multi-Layer Perceptron (MLP) trained
using the error back propagation algorithm [3]. An input vector (IVD) is pre-
sented to the neural network which determines an output. The comparison be-
tween the computed and desired output (class attribute) provides an output
error. This signal is used by the learning algorithm to adapt the network pa-
rameters. A Hardware implementation of MLP has been built for solving the
classification problem for the IVD.

The perceptron network can easily cope with complex classification prob-
lems. The method of ensuring it captures the right IVD is not controlled by a
set of rules but by a learning process. In many respects this learning process is
rather similar to the way the brain learns to distinguish certain patterns from
others.

Multilayer perceptrons (MLPs) are feedforward neural networks trained with
the standard backpropagation algorithm. They are supervised networks so they
require a desired response to be trained. They learn how to transform input data
into a desired response, so they are widely used for pattern classification. With
one or two hidden layers, they can approximate virtually any input-output map.
They have been shown to approximate the performance of optimal statistical
classifiers in difficult problems. Most neural network applications involve this
model.

MLP learning process is done by way of presenting the network with a training
set composed of input patterns (intrusion vector) together with the required
response pattern (classification). By present we mean that a certain pattern is
fed into the input layer of the network. The net will then produce some firing
activity on its output layer which can be compared with a ‘target’ output. By
comparing the output of the network with the target output for that pattern we
can measure the error the network is making. This error can then be used to alter
the connection strengths between layers in order that the network’s response to
the same input pattern will be better the next time around. The main purpose of
the first layer is just to deliver the input signals for all the neurons of the hidden
layer. As the signals are not modified by the first layer neurons (the neurons do
not have arithmetical operations), the first layer can be represented by a single

Fig. 1. MLP topology (input/hidden/output layers)
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set of busses in the hardware model. The IVD has 29 elements (Figure 1), so the
first layer has 29 neurons.

For our case the MLP is trained by backpropagation algorithm to distinguish
among inoffensive packages and packages that represent attacks to a host in a
computer network. In his work we use a workstation to train the net and later
we put the weights into the FPGA architecture for recognition purpose.

4 FPGA Architecture of the IDS

The digital architecture proposed here is an example of a reconfigurable com-
puting application, where all stages of the MLP algorithm in recognition mode
reside together on the FPGA at once. Neural networks in general, work with
floating-point numbers. Working with floating-point numbers in hardware is a
difficult problem because the arithmetic operations are more complex that with
integer numbers. Further more, the dedicated circuits for floating point opera-
tion are more complex, slower, and occupy a larger chip area that integer number
circuits. However, to achieve best results we use floating point IEEE 754 Single
Precision (Exponent is 8 bits and has a bias of 127. Mantissa is 23 bits not
including the hidden 1) to code the intrusion vector and the parameters of the
neural model.

The Architecture of the neural network was designed with parallel Processor
Element (EP). The EP is the elemental element in neurocomputing and the whole
system is built with multiple interconnected EP. Each EP performs weighted
accumulation of inputs (intrusion vector) and evaluation of output levels with a
certain activation function. Figure 2 shows the internal structure of an EP which
has a 32 bit multiplier (MULT), and adder (ADD), an accumulator register
(AC), look-up table for non-linear filter implementation and shift-register for
the internal weights and the network pattern (intrusion vector). The final IDS
has seven EP which can operate in parallel (six in the hidden layer and one in
the output level).

The high level design of the IDS has been defined using Handel-C [110] us-
ing the development environments FPGA advantage and DK1 to extract EDIF

Fig. 2. Block Diagram of an PE
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files. All designs have been finally placed and routed in a XilinxVirtex V1000
FPGA, using the development environment Xilinx ISE (Integrated Software En-
viroment).

5 Comparative Results

The obtaining the data, it is necessary to gather so much data of inoffensive
packages, as of dangerous packages, to separate them, and to make sure that
was significant. To obtain the dangerous packages two machines they are used,
one from which the attacks rushed using the scanner ’ Nessus’ and another from
which those packages were captured using the traditional IDS ’ Snort’, in total
433 dangerous packages were obtained. To obtain the inoffensive packages, a real
net of computers is used, that is to say, where the habitual packages flow in any
company or corporation where it seeks to settle an IDS. Finally the study has
been carried out using a small departmental net. The fact that the address IP
origin and the destination are the same one in all the packages it doesn’t rebound
in the obtained results, since that information one doesn’t keep in mind. Between
Windows and Linux 5731 inoffensive packages were obtained.

In our experiments we proceed separating a group of samples of those ob-
tained to train, and using them for test. Concretely 80% of packages has been
chosen for training, and 20% for test, as much for the inoffensive packages as
for the obtained dangerous packages. The results will measure them in terms
of percentage of successes obtained in the test packages that will be: dangerous
or normal traffic packets. Figure 4 shows the quick learn of the intrusion vector
patterns in the MPL and table 2 shows the final test results.

Fig. 3. IDS Classifier Implementation
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Fig. 4. Learning of the intrusion patterns error evolution

Table 2. Final packet IDS results

Packet type Training TCP/IP network Test Correct Classification Probability

Normal 4585 1146 0.985395

Intrusión 346 87 0.977273

6 Conclusions

One limitation of current modeling techniques is that when cost metrics change,
it is necessary to reconstruct new cost-sensitive models. In our approach, it is
built dynamic models which can learn new intrusion patterns. These techniques
will help reduce the cost of static models due to changes in intra-site or metrics.
Our system can operate in real-time response and has good response in detection
of intrusion. In future work, we will also study how to incorporate uncertainty
of cost analysis due to incomplete or imprecise estimation, especially in the case
of anomaly detection systems, in the process of cost-sensitive modeling. We will
also perform rigorous studies and experiments in a real-word environment to
further refine our system parameters.
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Abstract. This report shows how one can find a solution to the K-
SAT equations with the use of purely local computations. Such a local
network, inspired by the Survey Propagation equations driven by an ex-
ternal input vector, potentially has an exponential number of attractors.
This gives the network powerful classification properties, and permits
to reconstruct either noisy or incomplete inputs. It finds applications
from bayesian inference to error-correcting codes and gene-regulatory
networks, and its local structure is ideal for an implementaion on FPGA.
Here we write its algorithm, characterize its main properties and simulate
the corresponding VHDL code. One shows that the time of convergence
towards a solution optimally scales with the size of the network.

1 Introduction

The fast development of components efficiently performing parallely simulta-
neous computations (FPGAs, CPLDs) increases the interest of computations
making massively use of local parallelism, such as computations on graphs [8].

Belief propagation algorithms are well known algorithms which permit, by
the use of purely local messages, to converge towards the exact distribution
of a posteriori probabilities in tree-like graphicals models, or towards a good
approximation even in loopy networks [11].

But when the graph is too constrained, such classical local algorithms fail to
converge towards the desired distribution of probabilities.

The graphical model K-SAT (described below), recently studied and solved
using techniques of statistical mechanics, can be viewed as a toy-model of such
a constrained graph. The Survey Propagation equations are a generalization of
the Belief Propagation equations which permit to solve the K-SAT formulas in a
range of parameters in which the graph is highly constrained, and in which the
Belief Propagation equations fail [9, 10, 4].

J. Mira and J.R. Álvarez (Eds.): IWINAC 2005, LNCS 3562, pp. 385–394, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



386 J. Chavas et al.

But while the Survey Propagation equations use fully local computations,
the decimation based on these and which permits to converge to one particular
solution of the K-SAT problem uses a global criterion [10, 4], and is as such not
suitable for low-level parallelization.

In the present article, one builds a fully local network based on the Survey
Propagation equations, the dynamic of which lets it converge towards a desired
instance of the K-SAT equations. We then propose an algorithm and its VHDL
code, which will permit the implementation of this network on a FPGA. To
conclude, we will then shortly review the fields in which such an implementation
can be applied.

2 Solving and Properties of the K-SAT Equations

2.1 K-SAT Formulas

The K-SAT formula consists of N Boolean variables xi ∈ {0, 1} , i ∈ {1, ..., N}},
with M constraints, in which each constraint is a clause, which is the logical OR
(∨) of the variables it contains or of their negations. A clause is written as

(zi1 ∨ ... ∨ zir
∨ ... ∨ ziK

) (1)

where zir
= xir

(resp. x̄ir
) if the variable is directed (resp. negated) in the

clause. The problem is to find an assignment (if it exists) of the xi ∈ {0, 1} =
{directed,negated} which is such that all the M clauses are true. We define the
energy E of a configuration x = (x1, ..., xN ) as the number of violated clauses.

2.2 The Solution Space Becomes Divided into an Exponential
Number of Clusters

When the number of constraints M = αN is small, the solutions of the K-SAT
formulas are distributed close one to each other over the whole N−dimensional
space, and the problem can be solved by the use of classical local search algo-
rithms. When α is included in a narrow region αd < α < αc, the problem is
still satisfiable but the now limited solution phase breaks down in an exponen-
tial number of clustered components. Solutions become grouped together into
clusters which are fart apart one from the other.

2.3 Survey Propagation Equations with External Inputs

Recently, statistical physics methods derived from spin glass physics (making use
of the cavity method) have permitted to derive closed set of equations, which
allow, after decimation, the retrieval of a large number of different solutions
belonging to different clusters [9, 10, 4, 2, 3].

The principles of the method are schemed on Fig. 1. The message ηa→i rep-
resents the probability that the clause a sends a warning onto the variable i, i.e.
the probability that i is forced to be fixed at a value which satisfies a. As the
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Fig. 1. Factor graph representation of the K-SAT formula. A constraint (called a
clause) is represented by a square ; the variables are represented by a circle

clause a is an OR function, it corresponds to the probability that both j1 and j2
do not satisfy a (resp. βj1→a and βj2→a). If one assumes independence between
j1 and j2 when the link (the “cavity”) a − i is absent, this writes

ηa→i =
∏

j∈V (a)\i

βj→a , (2)

in which V (a) means “all the variables belonging to the clause a”.
One then writes without further derivation the dependency of βj→a (the

probability that j does not satisfy a) on the ηb→j (see Ref.[4, 10] for further
details) :

β±
j→a =

Π±
j→a

Π±
j→a + Π∓

j→a + Π0
j→a

, (3)

β+
j→a (resp. (−)) meaning that j is negated (directed) in the clause a. And :

Π±
j→a =


1 − λ

(
1 − πδξj ,±

) ∏
b∈V±(j)\a

(1 − ηb→j)


 ·

·
(
1 − πδξj ,∓

) ∏
b∈V∓(j)

(1 − ηb→j) (4)

Π0
j→a = λ

(
1 − πδξj ,+

) (
1 − πδξj ,−

) ∏
b∈V (j)\a

(1 − ηb→j)

in which V +(j) \ a means “all the clauses in which j is directed, except the
clause a”. By putting the real parameter λ to 0, one retrieves the well known
Belief Propagation equations. Last, these equations include the external input
field imposed onto the variable i, which has an intensity π and a direction ξi ∈
{−1, 0, 1}. The fact that πξi = ±π means that an a priori probability π of
assuming the value ±1 is being assigned to the variable i. If, on the other hand,
ξi equals 0, the variable i is a priori left unconditioned.
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The Equations (2, 3) form a closed set of equations between the ηa→i, called
“Survey Propagation (SP) equations with external inputs”. Iterating these equa-
tions permits to find the fixed point η∗

a→i, probability that, among all the clusters
of solutions, a sends a warning to i.

2.4 Temporary Local Field

At each sweep, to perform the local updates of the intensity of the external
inputs, as will be explained below, one needs to compute the local temporary
field for each variable i, i.e. the temporary tendency of the variable i to be equal
to 1(+), 0(−) or left unconstrained.

The tendency of the variable i to be equal to 1(+) (resp. 0(−)) then reads:

W
(±)
i =

Π̂±
i

Π̂±
i + Π̂∓

i + Π̂0
i

. (5)

in which Π̂±,0
i is equivalent to Π±,0

i of Equ. 4, but by now considering all the
inputs including the clause a.

3 Presentation of the Network

3.1 A Fully Parallel Decimation of the K-SAT Equations

We shall now introduce the important corollary of the SP algorithm with external
forcing field, which allows the retrieval of solutions close to any N-dimensional
point ξ in ln(N) time when implemented on a fully distributed device (SP-
parallel). On each variable i, the direction of the forcing field is fixed at the
external input value ξi ∈ {−1, 1}, while the intensity πi of its external forcing
field is now regularly updated : it equals π with probability 1 (resp. with prob-
ability p) when the temporary local field is aligned (resp. unaligned) with the
external forcing ; its value is 0 otherwise. In words, if, locally, the network wants
to align with the external forcing, one further stabilizes it in this direction ; if
the network really does not want, one still tries to drive it in that direction (so
that one obtains a solution as close as possible from the external forcing), but
not too much (with a probability p < 1) in order not to generate contradic-
tions.

Good properties of convergence are obtained by updating the direction of the
forcing field once every two steps, i.e. once every two parallel updates of all the
etas. At the end of a unique convergence, using a right and formula-dependent
choice of π and p, most variables are completely polarized, and a solution of
the K-SAT formula is finally found by fixing each variable in the direction of its
local field. As the update of the forcing is reminiscent of the Perceptron learning,
one calls such an algorithm the “Perceptron-like algorithm” : it is an efficient
distributed solver of the K-SAT formulas in the hard-SAT phase.
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3.2 “Perceptron-Like Decimation” Algorithm

INPUT: the K-SAT formula, an external input vector; a maximal number of
iterations tmax, a requested precision ε, and the parameters π and p for the
update of the external forcing
OUTPUT: if it has converged before tmax sweeps: one assigment, close from
the input vector, which satisfies all clauses.

0. At time t = 0: for every edge a → i of the factor graph, randomly initialize
the cavity bias ηa→i(t = 0) ∈ [0, 1]. The intensities of the input forcing field
are initially set to πi = 0.

1. For t = 1 to t = tmax:
1.1 update parallelely the ηa→i(t) on all the edges of the graph, using sub-

routine CBS-UPDATE.
1.2 half of the times, update parallelely the intensity π ∈ [0, 1] for all vari-

ables xi, using subroutine FORC-UPDATE.
1.3 If |ηa→i(t)−ηa→i(t−1)| < ε on all the edges, the iteration has converged

and generated η∗
a→i = ηa→i(t): GOTO label 2.

2. If t = tmax return UN-CONVERGED. If t < tmax return the satisfying
assignment which is obtained by fixing the boolean variable xi parallel to its
local field : xi = sign{W (+)

i − W
(−)
i }.

Subroutine CBS-UPDATE(ηa→i).
INPUT: Set of all ηb→j arriving onto each variable node j ∈ V (a) \ i
OUTPUT: new value for the ηa→i.

1. For every j ∈ V (a) \ i, compute the values of Π±
j→a,Π∓

j→a,Π0
j→a using Eq.

(4).
2. Compute ηa→i using Eq. (2, 3).

Subroutine FORC-UPDATE(πi).
INPUT: Set of all cavity bias surveys arriving onto the variable node i, including
the forcing field (πi, ξi).
OUTPUT: new value for the intensity πi of the additional survey.

1. Compute the local fields W
(+)
i ,W

(−)
i ,W

(0)
i using Eq.5.

2. Compute πi : πi = π with probability P (πi = π) = p + (1 − p) × θ(W (ξi)
i −

W
(−ξi)
i ), πi = 0 otherwise.

3.3 Choice of the Network

The results of the experiments presented below are performed with K5 “regular”
formulas, in which : first, the number of clauses where any given variable appears
negated or directed is kept strictly equal ; second, the number of clauses to which
belongs a given variable (the connectivity of the variable) is kept strictly constant
for all variables (here one chooses c = 84, i.e. α = 16.8).

The choice has been motivated by the good reconstruction properties of such
graphs when used to implement “lossy data compression” [2, 3]. Except if stated
otherwise, ones takes networks of N = 10000 variables, above which size conver-
gence properties don’t dramatically change (Fig. 7).
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4 Characterization of the Network

4.1 Distance Between the Input Forcing and the Output Solution

One presents to the network an input vector i. The network, driven by i, pro-
gressively converges towards a stable solution σo, which is also the output of the
network.

The optimal intensity πopt and the optimal probability of flip popt, for which
one obtains in average the closest solution σo from the input vector i, are respec-
tively equal to 0.52 and 0.72. For such choices of the parameters, the average
Hamming distance d(i,σo) = 1

2N (N −
∑N

i=1 iiσo,i) between the input vector
and the corresponding solution equals 0.314, which is slightly better (but in
agreement with) the value 0.329 found by performing the classical serial deci-
mation [2, 3].

4.2 Time of Convergence

At each sweep (i.e. at each parallel update of all etas), one constructs a tem-
porary assignment σt in which each coordinate σt,i = sign(W+

i − W−
i ) is fixed

parallel to the temporary local field. Fig. 2 represents the evolution respectively
of the energy E of the temporary assignment σt and of the Hamming distance
d(i,σt) between the input vector and σt. The algorithm converges towards a
solution after an average of 350 sweeps.

 0

 2000

 4000

 6000

 0  100  200  300
 0

 0.2

 0.4

 0.6

E
n
e
r
g
y
 
E
(

σ t
)

D
i
s
t
a
n
c
e
 
d
(
i
,

σ t
)

t

Energy
Distance

Fig. 2. Time of convergence towards a solution, by imposing a random forcing input

4.3 Stability of the Network - Resistance to Noise

The stability of the network is examined by taking a solution σo of the K-SAT,
and forcing the network with a noisy input vector i increasingly distant from
the solution σo. One recovers a solution σ which tends to belong to the same
cluster as σo (Fig. 3). In the language of the attractor network, the critical
distance dc = 0.265, for which the cluster converges in half of the cases towards
the initial cluster Cl(σo) is a measure of the average radius of the basin of
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Fig. 3. Stability of the cluster of solutions Cl(σo) to noise. Forcing the system with
the input i increasingly distant from a solution σo permits to recover a solution σ.
P (Cl) is the probability that σ belongs to the same cluster as σo

attraction of the cluster Cl(σo). Conversely, the curve P(Cl) of the probability
of convergence towards the same cluster Cl(σo) as a function of the distance
d(σ,σo) between the initial solution and the output solution is a measure of the
sharpness of the boundary of the basis of attraction of Cl(σo).

4.4 Associative Properties of the Network

The associative properties of the network have been used (in the context of se-
rialized computation) to build “lossy data compressors” [2, 3]. By presenting a
truncated part of the solution, one recovers after convergence a whole solution
from the same cluster. Without further optimization, and by choosing an inten-
sity π = 0.99 and a probability of flip p = 0.99, Fig. 4 shows that 18% of the
solutions is enough to recover a whole solution from the same cluster.
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Fig. 4. Stability to missing inputs. One forces the system with a fraction of the initial
solution σo . E is the energy of the assignment found at the end of the convergence
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5 Electronic Implementation

The previous algorithm is translated into a VHDL code, in view of a FPGA
implementation. All calculations are performed synchronously.

5.1 Structure of the VHDL Code

At the descriptive level : a component called graph is linked to the external word
(which can be a computer), receiving the vector i as input, and providing the
corresponding solution σo as output. Graph links together components called
computational-unit, each of them performing the calculations involving directly
a given variable. If two variables i and j belong to the same clause in the K-SAT
formula, then the two computational-unit representing respectively each of the
variables are linked by a signal (Fig. 5).

j

i

k

a

β

β

k−>aβ

i−>a

k−>a

i−>aβ

β j−>a

β j−>a

Fig. 5. Scheme of the transmission of the βj→a when COMMAND reads “01”

Main input/output lines of “computational-unit” representing the variable j
are drawn in Fig. 6. The INPUT-BETA-IA line transmits the value βi→a from
the variable i belonging to the same clause a as j. The OUTPUT-BETA-JA line
transmits to all variables belonging to clause a the value βj→a. The EPS line is
not compulsory : it transmits the information about local convergence.

Moreover, all components are wired together through a common clock signal
(CLK), an enable signal (ENABLE) and a two-bit command line (COMMAND).

EPS

O
U

PU
T
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PU

T

COMMAND

ENABLE

CLK OUPUT_B_JA

Comp.
Unit j

INPUT_B_IA

Fig. 6. Main input/output of the “computational-unit” component
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At the behavioral level, each unit constantly repeats four synchronized op-
erations, determined by the value of the COMMAND line. When COMMAND
equals :

– “00” : calculate βj→a using Eq. (3), for all clauses a to which belongs j

– “01” : transmit βj→a

– “10” : read βi→a, calculate ηa→j using Eq. 2
– “11” : update intensity of the forcing πi

5.2 Bit Representation of the Reals

For space optimization, the reals (βj→a, ηa→j ∈ [0, 1]2 have to be represented by
the possibly smallest number of bits. Convergence can be consistently achieved
if the reals are encoded in 12 bits, and if the update of the forcing is performed
once every two updates of the etas.

5.3 Logarithmic Dependence of the Time of Convergence on the
Size of the Graph

Fig. 7 shows that the time to converge to a solution depends logarithmically on
the size of the graph : t � 37 × ln(N) for N ≥ 2000.
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Fig. 7. Logarithmic dependence of the time of convergence on the size of the graph.
The fit is performed for N ≥ 2000. Graphs until a size of 3000 inc. have been done
using ModelSim and the VHDL code. Beyond, one used a C code performing the same
task

For such constrained graphs, information from local messages has to propa-
gate through the whole graph before convergence. This can’t be done faster than
in a logarithmic time. Thus, this time of convergence to find a K-SAT solution
on a distributed device is, in terms of scaling, the best possible.
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6 Conclusion

One has built a network and written its VHDL code which permit to find so-
lutions of the K-SAT formulas in ln(N) time, the best achievable scaling on
a distributed device. A physical interpretation of alternative methods of paral-
lelization will be described in detail in another manuscript [5]. This algorithm
or its derivatives, which define a local network with an exponential number of
attractors, has applications in error-correcting codes [2, 3] and gene-regulatory
networks [6]. Its powerful reconstruction properties are also likely to be used
in probabilistic inference for constrained graphs [8], artificial intelligence and
theoretical neuroscience [1, 7].
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Abstract. An artificial neural network (ANN) is a parallel distribution
of linear processing units arranged as layers. Parallelism, modularity and
dynamic adaptation are computational characteristics associated with
networks. These characteristics support FPGA implementation of net-
works, because parallelism takes advantage of FPGA concurrency, and
modularity and dynamic adaptation benefit from network reconfigura-
tion. The most important aspects of FPGA implementation of neural
networks are: the benefits of reconfiguration, the representation of in-
ternal data and implementation issues like weight precision and transfer
functions. This paper proposes a number of internal data formats that
optimize the network precision and a way of implementing sigmoid trans-
fer functions to make the most of FPGA implementation.

1 Introduction

It was an old dream to have a personal robot looking like a human [1]. One of
the main features of humanoid robots are biped walking in which the research
has focused on getting the robot to maintain stability as it walks in a straight
line. Usually complex analytical and hard computing methods are used for this
purpose, but a different, bio-inspired approaches can also be materialized [2].

The method is based on the definition of several sets of joint and Cartesian
coordinates pairs, which are generated using the humanoid robot direct kine-
matics [3]. These data sets are named postural schemes, and, for example, one of
them includes the positions involved in the execution of a single robot step. For
each postural scheme, a different ANN is used, and the respective network will be
selected depending on the posture to be achieved. A two-layer backpropagation
network is trained separately with the respective generated data and is used
to learn a representative set of input-target pairs, which has been introduced
in elsewhere [4]. The topology of the ANN is as follows: the input layer has 3
neurons, one for each element of the Cartesian coordinates of the free foot, the
output layer has 12 neurons, associated to the joint coordinates of the humanoid
robot, and, after trying out several configurations, the hidden layer contains no
more than 6 neurons.

J. Mira and J.R. Álvarez (Eds.): IWINAC 2005, LNCS 3562, pp. 395–404, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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In this paper, we introduce the hardware implementation of the artificial
neural networks used by the postural scheme method. The use of this technology
provides an improved autonomy to the humanoid robot, making be able the use
of specific postural schemes when needed thanks to the FPGA reconfigurability.

The rest of this paper is organized as follows. We first present the current
problems surrounding the FPGA implementation of neural networks and then go
on to explain a range of design solutions. This is followed by a description of how
the network has been implemented and the evaluation of the results achieved by
the implemented neural network.

2 Hardware Implementation of ANN

The implementation of networks with a large number of neurons is still a chal-
lenging task, because the most of the neural network algorithms are based on
arithmetic operations such as multiplications. Multipliers are very expensive op-
erators to implement on FPGAs, as they take up quite a lot of silicon area.
Using FPGA reconfigurability, there are strategies that efficiently and inexpen-
sively improve the implementation of networks.

ANN were first implemented on FPGAs over ten years ago. Since then, a
lot of research and applications related to neural networks have been developed
using FPGA-based approaches. The implementations can be classed according
to the following criteria: purpose of reconfiguration and data representation.

Many of the implementations that have been realized take advantage of
FPGA reconfigurability. Depending on the use to which reconfiguration is put,
there are several implementation approaches. For instance, sometimes FPGAs
are used for prototyping due to they can be rapidly reconfigured an unlimited
number of times. The first network implementation was an implementation of a
connectionist classifier and is, also, a clear example of prototyping using device
reconfiguration to generate tailored hardware for each classifier application [5].

A second implementation approach is the design density enhancement, which
exploits run-time and parallel reconfiguration features. On the one hand, the
sequential steps taken by the network algorithm can be time-multiplexed to
divide the algorithm into executable steps [6, 7]. Another option is to divide the
neural network into specialized modules with a set of operands. This technique
is known as dynamic constant holding and it can be used for implementing
multilayer perceptrons [8].

Another important topic is the topology adaptation, which refers to the fact
that FPGAs can be reconfigured dynamically, enabling the implementation of
neural networks with modifiable topologies. The algorithm called FAST (Flexible
Adaptable-Size Topology) [9] that is used for implementing two-layered neural
networks, is an example of this kind of application.

As we commented previously, the second criterion to class the FPGA imple-
mentation of neural networks is the data representation. A lot of the research
into the FPGA implementation of networks is based on network training with
integer weights, skirting the problems of working with real numbers in FPGAs.
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There are special training algorithms that constrain the weights to powers of
two or sums of powers [10]. The main advantage with this is that multipliers
are replaced by shift and add registers. Some floating-point designs have been
tested, but some authors [11] conclude that, despite FPGA and design tool so-
phistication, neural networks cannot be feasibly implemented on a FPGA with
an acceptable level of precision. Some designers have opted for the bit-stream
arithmetic solution, based on random bit streams that represent real numbers.
This method reduces the use of multipliers, but severely limits the network learn-
ing and problem-solving ability.

3 Comments on Weight Precision and Transfer Functions

A lot of research into FPGA implementations of neural networks comes to the
same conclusion, namely, that the most important implementation-related deci-
sions to be taken are weight precision selection and transfer function implemen-
tation.

Neural networks usually use floating-point weights. Obviously, this involves
using floating-point numbers within the network. From the hardware viewpoint,
however, this is much more complicated than working with integers. Additionally,
floating-point circuits are slower, more complex and have larger silicon area
requirements than integer circuits. A very commonly used solution to simplify
the design is to convert real numbers into integers, which leads to a significant
loss of precision. High precision leads to fewer errors in the final implementation,
whereas low precision leads to simple designs, high speed and reductions in area
and power consumption.

The implementation of transfer functions raises problems as to how to repre-
sent the arithmetical operations. The most commonly used solutions are: piece-
wise linear approximation and look-up tables. The piecewise linear approxima-
tion describes a combination of lines, and authors use it as an approximation
to implement a multilayer perceptron [12]. Using look-up tables, examples of
values from the center of the function are entered in a table. The regions out-
side this area are represented by the area boundaries, because the values-based
approximation is considered a straight line. This is how the function is approxi-
mated. The more examples there are, the bigger the area will be. Consequently,
a decision will have to be made as to what the minimum accepted precision is
depending on the occupied silicon area.

4 Data Representation

As we explained previously, we are using the artificial neural networks as a
method for calculating the final foot positions of an humanoid robot. For this rea-
son, the inputs for the implemented neural networks are Cartesian coordinates—
the desired final position of a foot— and the outputs it returns are angles as
radians —the values for the joints—. Therefore, floating-point numbers need to
be used, which can be considered as the common case in the most of applications.
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This is where the first important constraint materializes: real numbers cannot
be synthesized. Consequently, a numerical format needs to be designed that can
represent real numbers and can, at the same time, be synthesized.

We use a 16-bit sign-magnitude binary format, allocating the 6 most signifi-
cant bits (including the sign bit) to represent the integer part and the following
10 to represent the decimal part. This gives a representation range of (−32, 32)
with a precision of 1/210.

Previously we used this format in another design, but the integer part was
represented in 2’s Complement rather than sign-magnitude format. This format
is more efficient, because the FPGA is capable of working in 2’s Complement.
The main problem with this format is that 2’s Complement cannot represent
−0. Therefore, none of the values between (−1, 0) are represented.

However, sometimes is recommended to raise the precision, usually when
values between (0, 1) must be represented. Thanks to the possibility to define
the precision in a variable way, a special format is also used for this sort of
situations, which raises precision significantly. This is an 18-bit format, all of
which are allocated to the decimal part, getting a precision of 1/218.

5 Transfer Functions

The implemented networks are multilayer. The most commonly used transfer
functions in such networks are logarithmic and tangential sigmoid:

fl(n) =
1

1 + e−n
(1)

ft(n) =
en − e−n

1 + e−n
(2)

As the tool used does not synthesize floating-point numbers, implementation
of the sigmoid transfer functions comes up against several problems: the num-
ber e cannot be raised to a real number, nor can divisions be performed, since
the result of dividing one number by a higher one is always zero, because real
numbers are not permitted.

Our first idea for solving this problem was to search a function that ap-
proximates en and e−n. To this end, we examined the division-based Taylor
approximation function, shown in (3).

ex = 1 + x +
x2

2!
+

x3

3!
+ . . . +

xn

n!
(3)

This solution was rejected, because floating-point divisions cannot be per-
formed, as explained above. Therefore, we decided to use splines to approximate
the function by means of polynomials.

5.1 Logarithmic Sigmoid Function

Splines are used to approximate the function, using a polynomial in each curve
piece. This polynomial should be of a small degree, because the greater the
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degree is, the larger the number of multiplications is and the higher the FPGA
area requirements are. A polynomial of degree 3 is calculated that approximates
the function quite precisely, the interpolation spline being as follows:

sl(n) =




0 if n < −5
0.0466n3 + 0.0643n2 + 0.3064n + 0.5131 if − 5 ≤ n < −1.5

−0.0166n3 + 0.249n + 0.5 if − 1.5 ≤ n < 1.5
0.0466n3 − 0.0643n2 + 0.3064n + 0.5131 if 1.5 ≤ n < 5

1 if n ≥ 5

(4)

The case of a very simple two-layered network, with two neurons in the first
layer and two in the output layer, was analyzed. In each network, we implemented
the XOR logical function, getting a mean error of 0.0044. In this manner, we
managed to interpolate the transfer function very accurately, there is a small
loss of precision at the inflection points, exactly in −5 and 5.

5.2 Tangential Sigmoid Function

As in the above case, the aim is to find a polynomial of the least possible de-
gree that interpolates the function curve. As in the logarithmic case, we get an
approximation interpolation spline of degree 3.

st(n) =




−1 if n < −2.5
0.0691n3 + 0.4849n2 + 1.1748n if − 2.5 ≤ n < 0
0.0691n3 − 0.4849n2 + 1.1748n if 0 ≤ n < 2.5

1 if n ≥ 2.5

(5)

To evaluate the errors for all approximations, the same test case was run for
all the error studies. The mean error (0.0185) is very small and, as in the above
case, we find that there is a small loss of precision at the inflection points, −2.5
and 2.5 in this case.

6 FPGA Network Design

We are considering neural networks composed of three layers: an input layer, a
hidden layer and an output layer. The transfer functions applied in the inter-
mediate layer are sigmoid (logarithmic or tangential) functions, and the transfer
function applied in the output layer is linear.

For design purposes, the networks were divided into three layers, which do
not exactly match the layers enumerated above. The Input Layer is responsible
for operating on the inputs using hidden layer weights and thresholds calcu-
lated by network training. The Intermediate Layer is in charge of applying the
transfer function to the outputs of the input layer to get the normalized inputs
for the output layer. As we discuss previously only the logarithmic and tangen-
tial sigmoid functions have been implemented. The Output Layer operates on
the module inputs using the output layer weights and thresholds calculated by
training the network.
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As we can see, the input and output layers perform the same operation. The
main difference lies in the weights and thresholds each layer uses to perform this
operation.

6.1 Input and Output Layers

The input and output layers are modules responsible for using weights and
thresholds to operate on the input signals and get results that can be used
as input for the intermediate layer (in the case of the input layer) and network
output (in the case of the output layer).

As both layers are alike, they are composed of the same blocks, as illustrated
in Fig. 1. The Operator “n” block (bottom left) is responsible for reading a row
of weights and thresholds from memory and then use these values to operate on
the layer inputs. The Layer Control block (top center) is in charge of activating
the above block, indicating the starting position of the weights and thresholds
row to be read. Finally, the Register Set (right) guarantee layer output signals
stabilization.

6.2 Intermediate Layer

In-between the input and output layers is a module in charge of applying the
transfer functions to the outputs of the input layer so that they are normalized
before they enter the output layer, that is, their values are bound within a
small range. This range varies depending on the transfer function used. As we
explained above the transfer functions to be implemented are logarithmic and
tangential sigmoids.

A module is realized that implements the transfer function depending on the
operator type, that is, is in charge of realizing the sigmoid approximation. This
module is designed by means of a state machine and is called as many times

Fig. 1. Overall structure of the 6x4 output layer
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Fig. 2. Structure of the 4-neuron intermediate layer

as there are input layer outputs. Therefore, another state machine is realized to
control these calls. The Fig. 2 shows the structure of a 4-neuron intermediate
layer. As we can see, this intermediate layer is divided into several blocks. The
Operator block (top right) is in charge of implementing the interpolation spline,
appearing in designs as logarithmic or tangential sigmoids, depending on the
transfer function to be applied, both having the same structure. The Intermedia
block: controls the calls to the respective operator, and is called intermediate log
or intermediate tan depending on the transfer function. Similarly to the previous
cases, a Register Set (right bottom) is used to stabilize the output signals.

7 Experiments and Results

To verify the correct implementation of neural networks on FPGAs, we have
selected one test network is selected and one data set. Then, the results are
evaluated in each network layer this way to be able to study the error in each
one and later get the mean network error.

In the following and as example, we will show how the network works with one
data item, a tuple of 3D coordinates, which decimal and binary representation
formats are shown in Table 1. The test network is composed of 3 inputs, 12
outputs and 6 neurons in the hidden layer.
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Table 1. Data item for experimentation

Coordinate Decimal Data Item Binary Data Item

x 1.12 000001.0001111010
y 0.04 000000.0000101000
z −0.99 100000.1111110101

The input layer is executed with the data shown in Table 1. The results and
error for each of the layer outputs are shown in Table 2. The decimal number
that should be output is listed first, followed by the binary result calculated by
the network, the decimal equivalent of this result and, finally, the error.

Table 2. Results and error for the input layer

Ref Output Binary Network Decimal Network Error

−2.7883 100010.1100100000 −2.78125 0.00705
−1.6107 100001.1001111100 −1.6210937 0.01039375
0.5447 000000.1001001100 0.57421875 0.02951875
0.3264 000000.0101000100 0.31640625 0.00999375
1.5848 000001.1001111100 1.62109375 0.03629375
−1.6096 100001.1010000000 −1.625 0.0154

To examine the cumulative error, the outputs calculated by the input layer
are entered into the intermediate layer. The results and errors are evaluated as
before and they are shown in Table 3.

Table 3. Results and error for the intermediate layer

Ref Output Binary Network Decimal Network Error

0.058 000000.0000111110 0.060546875 0.002546875
0.1665 000000.0010101010 0.166015625 0.000484375
0.6329 000000.1010011000 0.6484375 0.0155375
0.5809 000000.1001011001 0.586914063 0.006014063
0.8299 000000.1101010110 0.833984375 0.004084375
0.166 000000.0010101001 0.165039063 0.000960938

Finally, the outputs of the intermediate layer are entered as inputs for the
last layer. This way the total network error can be evaluated. The results and
errors are shown in the Table 4.

Following the same procedure, the error analysis was run on a large data
set, and the results were as follows. The mean error for the input layer is 0.013.
This error is due, mainly, to format-induced error, because precision is 1/210.
The cumulative error of the intermediate and input layers is considerably lower
(falling from 0.013 to 0.0008). Probably, we guess that sigmoid functions absorbs
some of the error of the preceding layer. Finally, the mean network error, i.e.
the cumulative error for the three network layers, is 0.03, that is, the network is
precise to one hundredth of a unit.
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Table 4. Results and error for the output layer

Ref Output Binary Network Decimal Network Error

−0.2277 100000.0011110111 −0.241210998 0.013510938
−0.3504 100000.0100001110 −0.263671875 0.086728125
0.2102 000000.0011011000 0.2109375 0.0007375
0.1423 000000.0000111001 0.055664063 0.086635938
0.2274 000000.0011110111 0.241210938 0.013810938
−0.0012 100000.0000000010 −0.001953125 0.000753125
0.0016 000000.0000000100 0.00390625 0.00230625
−0.2296 100000.0011111001 −0.243164063 0.013564063
−0.4843 100000.0110001110 −0.388671875 0.095628125
0.4763 000000.0111010100 0.45703125 0.01926875
0.0088 000000.0001000101 0.067382813 0.058582813
0.2275 000000.0011110111 0.241210938 0.013710938

8 Conclusions and Future Work

Compared with the other neural network implementations mentioned earlier,
the result of this work is quite satisfactory. A 16-bit binary format has been
used, capable of representing floating-point numbers. This has solved one of
the controversial aspects that other authors point out concerning FPGA im-
plementations of neural networks. Thanks to this format, we have managed to
implement quite a precise neural network design that does not have excessive
FPGA area requirements.

Innovations have been introduced as regards transfer functions too. These
functions were approximated in other implementations by means of look-up ta-
bles or piecewise linear approximations. In the implemented design, the functions
were approximated non-linearly, resulting in a notably higher precision, again
without FPGA area requirements being excessive.

Now, we are focusing our efforts for dividing the design into separate FPGAs
to optimize operation, for example, by separating it by layers. Therefore, each
layer can be loaded in a different FPGA making possible the use of smaller de-
vices or, as counterpart, bigger neural networks. On the other hand, this network
modularization can also be used over the same FPGA by means of reconfigura-
tion. So, examining the advantages of FPGA reconfiguration and its impact on
the implementation of the design presented here is another of our current works.
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Abstract. The brain representations of words and their referent ac-
tions and objects appear to be strongly coupled neuronal assemblies
distributed over several cortical areas. In this work we describe the im-
plementation of a cell assembly-based model of several visual, language,
planning, and motor areas to enable a robot to understand and react
to simple spoken commands. The essential idea is that different cortical
areas represent different aspects of the same entity, and that the long-
range cortico-cortical projections represent hetero-associative memories
that translate between these aspects or representations.

1 Introduction

When words referring to actions or visual scenes are presented to humans, dis-
tributed cortical networks including areas of the motor and visual systems of
the cortex become active [1, 2]. The brain correlates of words and their referent
actions and objects appear to be strongly coupled neuron ensembles in specific
cortical areas. Being one of the most promising theoretical frameworks for mod-
eling and understanding the brain, the theory of cell assemblies [3, 4] suggests
that entities of the outside world (and also internal states) are coded in overlap-
ping neuronal assemblies rather than in single (”grandmother”) cells, and that
such cell assemblies are generated by Hebbian coincidence or correlation learn-
ing. One of our long-term goals is to build a multimodal internal representation
using several cortical areas or neuronal maps, which will serve as a basis for
the emergence of action semantics, and to compare simulations of these areas to
physiological activation of real cortical areas.

In this work we describe a cell-assembly-based model of several visual, lan-
guage, planning, and motor areas to enable a robot to understand and react
to simple spoken commands [5]. The essential idea is that different cortical ar-
eas represent different aspects (and correspondingly different notions of simi-
larity) of the same entity (e.g., visual, auditory language, semantical, syntac-
tical, grasping related aspects of an apple) and that the (mostly bidirectional)
long range cortico-cortical projections represent heteroassociative memories that
translate between these aspects or representations. Fig. 1 illustrates roughly the
assumed locations and connections of the cortical areas actually implemented in
our model.
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Fig. 1. Left: Robot on which the cortex model has been implemented to demonstrate
a scenario involving understanding simple sentences as well as seeking and pointing to
objects lying on a table. Right: Interaction of the different areas of the cortical model
(v: visual, l: location, f: contour features, o:visual objects, h:haptic/proprioceptive,
p:phonetics, s:syntactic, a:action/premotoric, g:goals/planning) and their rough local-
ization in the human brain

This system is used in a robotics context to enable a robot to respond to
spoken commands like ”bot show plum” or ”bot put apple to yellow cup”.
The scenario for this is a robot close to one or two tables carrying certain
kinds of fruit and/or other simple objects (Fig. 1). We can demonstrate part
of this scenario where the task is to find certain fruits in a complex visual
scene according to spoken or typed commands. This involves parsing and un-
derstanding of simple sentences, relating the nouns to concrete objects sensed
by the camera, and coordinating motor output with planning and sensory pro-
cessing. The cortical model system can be used to control a robot in real time
because of the computational efficiency of sparse associative memories
[6, 7, 8].

2 Language, Finite Automata, Neural Networks and Cell
Assemblies

In this section we briefly review the relation between regular grammars, finite
automata and neural networks [9, 10, 11]. Regular grammars can be expressed
by generative rules A → a or B → bC where upper case letters are variables and
lower case letters are terminal symbols from an alphabet Σ. Regular grammars
are equivalent to deterministic finite automata (DFA). A DFA can be specified
by a set M = (Z,Σ, δ, z0, E) where Z is the set of states, Σ is the alphabet,
z0 ∈ Z is the starting state, E ⊆ Z contains the terminal states, and the function
δ : (Z,E) → Z defines the state transitions. A sentence s = a1a2 . . . an ∈ Σ∗
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Fig. 2. Left: DFA; Middle: Neural Network; Right: Cell assemblies

(where Σ∗ is the set of all words over the alphabet Σ) is said to be well formed
with respect to the grammar if δ(...δ(δ(z0, a1), a2), ..., an) ∈ E.

DFAs can be simulated by neural networks [12, 13]: E.g., it is sufficient to
specify a simple model of recurrent binary neurons by N = (C,D,W, V, c00),
where C contains the local cells of the network, D is the set of external input
cells, W and V are binary matrices specifying the local recurrent and the input
connections (Fig. 2). The network evolves in discrete steps, where a unit is
activated, ci(t) = 1, if its potential xi(t) = (Wc(t − 1) + V d(t − 1))i exceeds
threshold Θi, and deactivated, ci(t) = 0, otherwise. A simple emulation of the
DFA requires one neuron cjk for each combination of state zj and input symbol
ak, plus one neuron dk for each input symbol ak. Further we require synaptic
connections wil,jk = dk,jk = 1 (0 < l < |Σ|) for each state transition (zi, ak) �→
zj . As threshold we use Θi = 1.5 for all neurons. If at the beginning only a
single neuron c0l (e.g., l = 0) is active the network obviously simulates the DFA.
However, such a network is biologically not very realistic since, for example, such
an architecture is not robust against partial destruction and it is not clear how
such a delicate architecture could be learned.

A more realistic model would interpret the nodes in Fig. 2 not as single neu-
rons but as groups of nearby neurons which are strongly interconnected, i.e.
local cell assemblies [3, 6, 14, 15]. This architecture has two additional advan-
tages: First, it enables fault tolerance since incomplete input can be completed
to the whole assembly. Second, overlaps between different assemblies can be
used to express hierarchical relations between represented entities. In the fol-
lowing subsection we describe briefly a cortical language model based on cell
assemblies.

3 Cortical Language Model

Our language system consists of a standard Hidden-Markov-based speech recog-
nition system for isolated words and a cortical language processing system which
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Fig. 3. Architecture of cortical language areas. The language system consists of 10
cortical areas (large boxes) and 5 thalamic activation fields (small black boxes). Black
arrows correspond to interareal connections, gray arrows to short-term memory

can analyse streams of words detected with respect to simple regular gram-
mars [16].

Fig. 3 shows the 15 areas of the language system. Each area is modeled as a
spiking associative memory of 400 neurons [17, 8]. Binary patterns constituting
the neural assemblies are stored auto-associatively in the local synaptic connec-
tions by Hebbian learning.

The model can roughly be divided into three parts. (1) Primary cortical
auditory areas A1, A2 and A3. (2) Grammatical areas A4, A5-S, A5-O1a, A5-
O1, A5-O2a, and A5-O2. (3) Relatively primitive “activation fields” af-A4, af-
A5-S, af-A5-O1, and af-A5-O2 that subserve to coordinate the activation or
deactivation of the grammar areas. When processing language, first auditory
input is represented in area A1 by primary linguistic features (such as phonemes),
and subsequently classified with respect to function in A2 and content in A3.
The main purpose of area A4 is to emulate a DFA in a similar way as the neural
network in Fig. 2. Fig. 4 shows the state graph of A4. Each node corresponds to
an assembly representing a grammatical state, and each edge corresponds to a
state transition stored in delayed recurrent hetero-associative connections of area
A4. For example, processing of a sentence ”Bot show red plum” would activate
the state sequence S→Pp→OA1→O1→ok SPO corresponding to expectation of
processing of a subject, a predicate, an object or attribute, and finally an object.
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Fig. 4. Sequence assemblies stored in area A4 representing grammatical states. Each
node corresponds to an assembly, each arrow to a hetero-associative link, each path to
a sentence type. E.g., a sentence “Bot show red plum” would be represented by the
sequence (S,Pp,OA1,O1,ok SPO)

If the sentence was well formed with respect to the grammar, then the sequence
terminates in an ”ok X” state, otherwise in one of the ”err X” states.

In our robot scenario it is not sufficient to decide if language input is gram-
matically well formed or not, but is also necessary to ”understand” the sen-
tence by transforming the word stream into an action representation. This is
the purpose of areas A5-X which correspond to different grammatical roles or
categories. In our example, area A5-S represents the subject ”bot”, A5-P the
predicate ”show” and A5-O1a and A5-O1 the object ”red plum”. Although
establishing a precise relation to real cortical language areas of the brain is
beyond the scope of this work [18, 19], we suggest that areas A1, A2, A3 can
roughly be interpreted as parts of Wernicke’s area, and area A4 as a part of
Broca’s area. The complex of the grammatical role areas A5 might be inter-
preted as parts of Broca’s or Wernicke’s area, and the activation fields as thalamic
nuclei.

3.1 Example: Disambiguation Using Contextual Information

As discussed in section 2 our associative modeling framework is closely connected
to finite state machines and regular languages in that we embed the automaton
states in the attractor landscape of the associative neural networks. However, in
contrast to the (purely symbolic) automata our state representations can express
a similarity metric (e.g., by overlaps of different cell assemblies coding different
states) that can be exploited in order to implement fault tolerance against noise
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Fig. 5. Disambiguation using context: The example illustrates the states of the lan-
guage areas after processing “bot lift” and then receiving noisy ambiguous acoustic
input (“ballwall”) which can be interpreted either as “ball” or as “wall”. The conflict
is solved by contextual information in areas A4 and A5-P representing the verb “lift”
which expects a “small” object (such as a ball)

and to use contextual information to resolve ambiguities, e.g. by selecting the
most probable interpretation.

The following example illustrates the ability of our model to resolve conflicts
caused by noisy ambiguous input (see Fig. 5). After processing “bot lift” the
primary auditory area A1 obtains noisy ambiguous input “ballwall” which can
be interpreted either as “ball” or as “wall”. The conflict is solved by contextual
information in areas A4 and A5-P representing the previously encountered verb
“lift” which expects a “small” object such as “ball”, but not a large (non-liftable)
object such as “wall”. Thus contextual input from area A4 (where “OAs” rep-
resents a “small” object) biases the neural activity in area A3 such that the
unambiguous representation “ball” is activated.

4 Action Processing

Our system for cortical planning, action, and motor processing can be divided
into three parts (see Fig. 6). (1) The action/planning/goal areas represent the
robot’s goal after processing a spoken command. Linked by hetero-associative
connections to area A5-P, area G1 contains sequence assemblies (similar to area
A4) that represent a list of actions that are necessary to complete a task. For
example, responding to a spoken command “bot show plum” is represented by
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Fig. 6. Architecture of the cortical action model. Conventions as in Fig. 4

a sequence (seek, show), since first the robot has to seek the plum, and then the
robot has to point to the plum.

Area G2 represents the current subgoal, and araes G3, G3attr, G4 represent
the object involved in the action, its attributes (e.g., color), and its location,
respectively. (2) The “motor” areas MX represent the motor command necessary
to perform the current goal, and also control the low level attentional system.
Area M1 represents the current motor action, and areas M2, M2attr, and M3
represent again the object involved in that action, its attributes, and its location.
(3) Similar to the activation fields of the language areas, there are also activation
fields for the goal and motor areas, and there are additional “evaluation fields”
that can compare the representations of two different areas.

To illustrate how the different subsystems of our architecture work together,
we describe a scenario where an instructor gives the command “Bot show red
plum!”, and the robot (“Bot”) has to respond by pointing to a red plum lo-
cated in the vicinity. To complete this task, the robot first has to understand
the command as described in section 3, which activates the corresponding A5-
representations. Activation in area A4 has followed the corresponding sequence
path (see Fig. 4). Immediately after activation of the A5-representations the cor-
responding information is routed further to the goal areas where the first part
of the sequence assembly (seekshow, pointshow) gets activated in area G1. Sim-
ilarly, the information about the object is routed to areas G2, G3 and G3attr.
Since the location of the plum is unknown, there is no activation in area G3.
After checking semantics, the “seek” assembly in area G2 and the corresponding
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Fig. 7. State of the action planning part of the model after successfully searching for
a red plum

representations in the motor areas MX are activated. This also triggers the at-
tentional system which initiates the robot to seek for the plum. Fig. 7 shows the
network state when the visual object recognition system has detected the red
plum and the corresponding representations have been activated in areas V2,
V2attr and V3. The control fields detect a match between the representations in
areas V2 and G3, which initiates area G1 to switch to the next part “point” of
the action sequence. The robot will then adjust its “finger position” represented
in area S1 in order to point to the plum. The matching of the positions will
be detected by the evaluation fields and this eventually activates the final state
in G1.

5 Conclusion

We have described the implementation of a cell assembly-based model of cortical
language and action processing on a robot [16, 5]. The model consists of about 40
neuron populations each modelled as a spiking associative memory containing
many ”local” cell assemblies stored in local auto-associative connections [17].
The neuron populations can be interpreted as different cortical and subcortical
areas, where it is a long term goal of this project to establish a mapping of our
“areas” into real cortex [1].

Although we have currently stored only a limited number of objects and
sentence types, it is well known for our model of associative memory that the
number of storable items scales with (n/ log n)2 for n neurons [6, 7]. However,
this is true only if the representations are sparse and distributed which is a
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design principle of our model. As any finite system, our language model can
implement only regular languages, whereas human languages seem to involve
context-sensitive grammars. On the other hand, also humans cannot “recognize”
formally correct sentences beyond a certain level of complexity suggesting that
in practical speech we use language rather “regularly”.
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Abstract. In this work, we will use self-organizing feature maps as a
method of visualization the sampling of the fitness space considered by
the populations of two evolutionary methods, genetic and macroevolu-
tionary algorithms, in a case with a mostly flat fitness landscape and low
populations. Macroevolutionary algorithms will allow obtaining better
results due to the way in which they handle the exploration-exploitation
equilibrium. We test it with different alternatives using the self-organizing
maps.

1 Introduction

When evolutionary methods are applied to automatically obtain robot controller
behaviours, their interconnection or aspects of the robot morphology [8], the
computer time requirements are high as each individual of the population must
be checked in a real or simulated environment during an adequate number of
steps or lifetime to assign it a reliable fitness. This implies the use of low pop-
ulations in the evolutionary methods to obtain reasonable solutions in bearable
amounts of time. In addition, in cases with mostly flat fitness landscapes, ex-
cept for a very sparse distribution of peaks where fit individuals are located [1],
such as the neural behaviour controllers we consider in that work, it is very
important to concentrate adequately the computer effort in the search of good
solutions, that is, to choice a good equilibrium balance between the exploration
and exploitation phases.

In methods of simulated evolution such as genetic algorithms (GAs), selec-
tive pressure determines how fast the population converges to a solution. The
more pressure, the faster the convergence, at the cost of increasing the proba-
bility of the solution found being suboptimal. The designer can choose, through
the selection criterion parameters, to consider the evaluation of a large number
of candidates throughout the search space or concentrate the search in the di-
rection of a good, possibly suboptimal, solution. There are different avenues in
the exploration-exploitation dilemma to concentrate the search in an adequate
number of candidate solutions, not only one. A first possible approximation to
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this objective is the use of parallel evolutionary algorithms, with subpopulations
that can cover different areas of the search space, at least at the beginning of
the evolution process, as studied in [10].

Another possibility to avoid the problem of ill convergence is to obtain se-
lection procedures that produce the desired clustering or concentration of the
search efforts on the different candidate solutions of the fitness landscape. This
“niching” process means, at the computational level, that these groups can be
formed around each local fitness peak of the solution space. The most classical
solution in this line is to consider the use of the so-called “crowding” operator
[3]: when a new individual is generated, it replaces the most similar individual
of the population, which prevents the possibility of having many similar indi-
viduals (“crowds”) at the same time in the population. Thus, the key point in
this approach seems to take into account some measurement of similarity among
the individuals, as done, for example, by Menczer et al. [6], who have also used
a local selection scheme for evolving neural networks in problems that require
multi-criteria fitness functions.

Another more formal solution in the same line, followed in this work, is the
one proposed by Maŕın and Solé [5]. The authors consider a new temporal scale,
the “macroevolutionary” scale, in which the extinctions and diversification of
species are modelled. The population is interpreted as a set of species that
model an ecological system with connections between them, instead a number
of independent entities as in classical GAs. The species can become extinct if
their survival ratio with respect to the others is not higher than a “survival
coefficient”. This ratio measures the fitness of a species respect to the fitness
of the other species. When species become extinct, a diversification operator
colonizes the holes with species derived from those that survived or with com-
pletely new ones. The use of this method was studied in previous works [1][2],
with average better results in terms of fitness with low populations respect
to GAs.

The usual measurements of fitness progress across generations in evolution-
ary methods do not provide us with sufficient information to know how they
are working in the exploration and exploitation of the fitness landscape. Be-
cause of that, in this work we will use self-organizing feature maps (SOMs) as
a method of visually represent the sampling of the fitness space that is con-
sidered by the populations of the evolutionary methods. The SOMs create a
translation between a high dimensional space and a lower one preserving the
spatial topology, that is, close points in the original space are projected to
nearby points in the map, with the same consideration with distant points,
and without forgetting the important feature of generalization in neural net-
work models. We will use 2-D maps with the original space being the gene
space. In that manner, the SOMs will provide us with a useful tool to inspect
that sampling when GAs and Macroevolutionary Algorithms (MAs) are used in
the evolution of neural controllers that imply the commented mostly flat fitness
landscapes.
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2 Brief Description of Macroevolutionary Algorithms

Here, we summarize the model proposed by Maŕın and Solé [5], which explains
the dynamics of an ecosystem based only on the relation between species. The
individuals in the population are referred as species. They can survive or become
extinct in each generation of the evolutionary process. The number of species
is a constant. The relation between them is established by a matrix in which
the term Wi,j(t) represents the influence of species j on species i at time t,
which is a continuous value in a given range. This influence is a measurement of
the difference of the relative fitness of the two species, considering the distance
between both in genotypic space:

Wij =
f(pi) − f(pj)
|(pi) − (pj)|

where pi = (pi1,. . . ,pin) is the genotype of species i, with its parameters in a
n-dimensional space. f represents the fitness of each species. Thus, the influence
is the difference in fitness with a normalization factor that weighs the distance
between the two.

Two operators are applied in each generation:
1. Selection operator: defines what species survive and what species become

extinct. To determine this, the “state” of each individual is calculated as:

Si(t + 1) =
{

1if
∑P

j=1 Wij(t) ≥ 0
0otherwise

that is, if the sum of the influences of a species relative to all the other species
in the population is positive, the species survives, otherwise, it becomes extinct.

2. Colonization operator: it defines how the extinct species are replaced. The
authors define a probability Γ to determine if a new solution pn is generated.
Otherwise, exploitation of surviving solutions takes place through “colonization”.
One of the surviving solutions, pb, is chosen as a base to replace the extinct
solution pi, and the new species that replaces the extinct one is attracted toward
pb, in the following manner:

pi(t + 1) =
{

pb(t) + ρλ (pb(t) − pi(t)) i f ξ > Γ
pn i f ξ ≤ Γ

where ξ is a random number in [0,1], λ a random number in [-1,1], both with
uniform distribution, ρ describes a maximum radius around the surviving solu-
tion and Γ controls the percentage of random individuals. This parameter may
act as a temperature, because it can decrease in evolutionary time to perform
a type of simulated annealing process. That is, when the temperature is low,
the randomness is low, and, consequently, there is a tendency towards increased
exploitation around the surviving individuals, and reduced exploration of new
species. Thus, when using a macroevolutionary algorithm one can tweak with
two parameters. On one hand, Γ determines what proportion of the species is
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randomly generated, that is, how much exploitation or exploration we perform
in a given generation. On the other, one can modify ρ and thus juggle with
the size of the attractor basin around pb, that is, it permits deciding how the
exploitation is carried out.

3 Test Case: Evolution of a Robot Wall Following
Controller

As we commented before, the comparison between GAs and MAs will be carried
out in a problem where robot controllers, made up of artificial neural networks,
are the end product. This common problem implies a sparse fitness function
and a large amount of processing per individual. In particular, all the examples
presented here correspond to the evolution of a wall following controller for a
Pioneer II robot.

The fitness evaluation is performed in a simulated environment where each
individual (a candidate controller) runs for a given lifetime of 1000 steps. As
a controller for the wall-following behaviour, we use a multilayer perceptron
with eight inputs that correspond to eight sonar sensors, 6 hidden nodes, and
two output nodes that specify the linear and angular velocity of the robot. The
genetic representation is direct, that is, each genotype codifies the 76 real values
of the neural weights, sigmoid slopes and neuron bias.

Evolution was carried out using two types of algorithms, with a population
of 800 individuals distributed in 8 races, with 100 individuals each, and dur-
ing 2000 generations. One of the algorithms was a pure genetic algorithm, with
a 0.8 crossover probability and a 0.01 mutation probability. Crossover was a
standard one-point crossover and mutation was random. The selection strategy
employed was tournament with a window size of 4 individuals. The GA used
a diagonal distribution for the initial population, as it has been shown to pro-
vide the best usage of resources [10]. This algorithm was taken as a standard
in order to compare different aspects. The other one was a macroevolutionary
algorithm in which ρ is 0.5 and Γ decreases linearly from 1 (in generation num-
ber 1) to 0 (in generation 1000) and then it keeps a constant value of 0 to
end of the evolutionary process. In the two methods are used migrations be-
tween the 8 races. There are two types of migrations: local and global. The
local migration has place each 40 generations and the best individual of each
race is copied to neighbour races (neighbourhood is defined in one dimension,
so every i race has two neighbours: i − 1, i + 1). The global migration hap-
pens each 80 generations and the best individual of each race is copied to every
other race.

Figure 1 shows the evolution of average fitness and the fitness of the best
individual across generations. The GA displays the classical evolution curve for
the best individual, that is, very fast fitness increase at the beginning, even with
the low pressure applied. There is a very fast exploitation at the beginning of the
evolutionary process where the GA make use of the genetic material present in
the initial population and recombines it to obtain the best possible individuals
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Fig. 1. Evolution of the fittest and average fitness for a GA and a MA

from this material, but then it gets stuck in a local maximum and it is barely
able to improve the solution using mutation.

In the case of MAs, exploration takes place first, and exploitation comes into
play slowly throughout the process as Γ decreases. In fact, due to the way in
which exploitation is carried out in this type of algorithms, new genetic material
arises also in the exploitation phase. This leads to a slower evolution in the
beginning, but it is much more constant as shown in the figure. In fact, it usually
leads to better results than GAs, especially in the low population cases, such as
those with 800 individuals.

In the case of the average fitness, the GA average fitness is far below maximum
fitness and it never converges to it. The search space in this problem could be
described as a flat surface with sporadic high peaks [1]. This particular search
space leads to most of the individuals in the population, resulting from crossover
or random mutation, being quite poor when performing the desired task. In the
MA case, this is different. Because of the way exploitation is carried out in this
algorithm, individuals tend to concentrate in the high peaks as time progresses.
In the next section, we will visually inspect these assertions with the neural
clustering of the population in both types of algorithms.

4 Clustering Analysis with Macroevolutionary and
Genetic Algorithms

To test the different behaviours used by the GA and the MA, in addition to the
usual measurements of the best individual and average fitness evolution across
generations, it would be interesting to have a method to determine the behaviour
of the evolutionary methods in relation to the sampling of the search space. Ob-
viously, we need a method to translate the n-dimensional space the evolutionary
method must consider to a lower dimensional one where that information can
be checked. Among the different alternatives, we have used the self-organizing
feature maps, which perform a mapping from a continuous input space to a
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Fig. 2. Clustering of the population of race number 0 through generations with the
MA. In the initial generations predominates the exploration phase that progressively
decreases to play basically with exploitation

discrete output space preserving the topological properties of the input. The
maps can provide us, in a visual manner, with the clustering effect of the input
space, which could be interpreted in terms of exploration and exploitation of the
evolutionary method.

The different trainings with the self-organizing maps have been done using
the NeuroSolutions 4.2 environment [7]. The inputs to the feature map are the
gene values, that is, the 76 genes that codify the neural controller weights. The
maps have 15x15 nodes, with Gaussian bell as function of activation in its nodes.
In all the cases it was used a final neighbourhood of two, as learning rate a value
0.001, 100 training epochs and a dot product based metric to determine the
output winner in the map.
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4.1 MA Population Clustering

Figure 2 shows the clustering results in the self-organizing map with Hinton
diagrams, where the size of the squares represents the frequency of activation
of each node in the 2-D self-organizing map. That is, it is a histogram of win
frequencies. Each of the Hinton diagrams corresponds to a particular generation,
from generation number 1 to generation 1900, using the populations of race
number 0. In the first 300 generations, the individuals of the population are
distributed in such a manner that practically covers the entire search space.
In this stage predominates the exploration phase, with the introduction of new
random individuals. Toward the end of evolution is clear a tendency to group the
population in progressively less number of clusters, for example, from the three
clusters in generation number 800, to the final and unique cluster in generations
1500-1900. We must take into account that the clusters can be formed in any
position of the map, as it is has been trained in each generation with their
particular population. To understand this tendency, we must remember that the
introduction of new individuals is decreased with the generations, that is, there
is a progressively exploitation of the good found solutions, in accordance with
the comments previously done with the evolution of the fitness.

We can also use the maps to inspect if the different areas covered by the
different races are or not the same. We can train a map with the individuals of
a particular race, and, once trained, use it to check if the individuals of other
races, in the same generation, correspond to the same clusters of the first one.
One example of that is in figure 3. In generation number 800, the left figure
represents the clustering once the map has been trained with 100 epochs with
the 100 individuals of race number 0 in that generation. That is, as the previous
cases, the Hinton diagram represents the frequency of the winner’s outputs with
the training set. The other three maps represent the frequency of the winner
nodes, using the weights of the map that corresponds to race number 0, but
tested with the individuals of other races (1, 6 and 7) in the same generation.
The first map of race number 0, trained with other random initial weights, has
the same three clusters shown in figure 2. The tests with the population of
the other races show that their clusters “fall” in the same cluster areas of race
number 0. For example, race number 1 is concentrating its population in two

Training: Race: 0 
Testing: Race 7

Training: Race: 0 
Testing: Race 6

Training: Race: 0 
Testing: Race 1

Training: Race: 0 
Testing: Race 0 

Fig. 3. Testing of the sampling in different races in a given generation (number 800).
Populations of races number 1, 6 and 7 were tested with the map of race number 0
(upper left figure)
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Fig. 4. Clustering of the population of race number 4 through generations with the GA.
The exploration phase only takes place in the 200 first generations. From generation
300 to the end the GA is working with only one cluster

of the same areas of the solution space considered in race number 0, but with
a greater concentration in the cluster that appears in the right top part. Race
number 6 is concentrating its population in other two clusters also considered
in race number 0, while race number 7 practically has all of its population in
the right top cluster. That means that the different races, at generation 800, are
exploring in the same areas, but with a different concentration of individuals,
with one race that can be exploring an area that is not extensively explored by
others. This fact is probably due to migrations.

4.2 GA Population Clustering

Figure 4 shows a sketch of the evolution of the clusters, trained, as in figure 2,
only with the population in each generation. It is appreciated only in the first 200
generations the exploration phase, even with the low selective pressure applied: 4
individuals (4% of the total individuals in each race) in the window tournament,
to select the one to procreate. From generation number 300 to the end, the GA
is only exploiting around the individuals situated in the same cluster, and the
fitness never reaches the MA values shown in figure 1.

4.3 Clustering Evolution Through Generations

Another possibility is to use SOMs, trained with all the individuals in all the
generations, for a posterior visualization of the movement of the population
across the fitness landscape. For example, in [9], the authors have used this
alternative with a GA, for the evolution of neural networks for a classification
problem.

We also have tested this alternative. Figure 5 now shows the evolution of the
clusters of the population of a given race (number 0) when the self-organizing
map has been trained with the population considered by the evolutionary method,
the MA in this case. The individuals used for the training were those of the 8
races, taken with intervals of 50 generations, from generation 0 to the final gener-
ation number 2000, that proportionate an ample vision of the different genotypes
the MA considers through the complete evolution. That is, figure 5 displays in
particular generations the clusters that appear when the individuals of that race
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Fig. 5. Evolution of clusters of race number 0 through generations. The population is
now tested with the map trained with all the individuals considered across generations

in a given generation are tested with the trained map. In that manner, the evo-
lution of the clusters gives an idea of the race population progress across the
fitness landscape.

There is a continuous movement of the clusters while there is an exploration
component in the MA, which progressively decreases with generations. In the
initial generations, new areas of the landscape are explored, but no one of the
promising areas disappears thanks to the way exploitation is carried out selecting
randomly one of the survival species. The introduction of new individuals in the
migrations between races, individuals that can be in different zones of the search
space and that consequently form clusters in other areas of the search space,
as we previously shown, helps to explore new areas. Finally, from generation
number 1300 to the end, the main cluster has not considerable movement, when
predominates the exploitation phase.

5 Conclusions

We have checked the use of self-organizing feature maps to inspect how differ-
ent evolutionary methods search across the fitness landscape. The analysis is
useful when the work with low populations and mostly flat fitness landscapes is
necessary, such as the one considered of a neural controller evolution.
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With the original space being the gene space, the different visualizations
with the SOMS allowed us to check different assumptions that we only suppose
with the usual measurements of fitness evolution, from the clustering formed in
each population, the test of the sampling of the landscape by different races,
to the evolution of the populations across the landscape through generations.
Finally, the used macroevolutionary algorithm has clearly shown a better balance
between exploration and exploitation than a classical GA, with an easy control
through few parameters.
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Abstract. In this paper we present a strategy for inducing a behavior in
a real agent through a learning process with a human teacher. The agent
creates internal models extracting information from the consequences of
the actions it must carry out, and not just learning the task itself. The
mechanism that permits this background learning process is the Multi-
level Darwinist Brain, a cognitive mechanism that allows an autonomous
agent to decide the actions it must apply in its environment in order to
fulfill its motivations. It is a reinforcement based mechanism that uses
evolutionary techniques to perform the on line learning of the models.

1 Introduction

When trying to deal with the problem of teaching a task to a robot through
real time interaction, there are lots of variables that must be taken into account.
In fact, the problem is normally driven by the designer and it is difficult to
determine what has been autonomously learned and what has been induced by
the limitations of the teaching process. As mentioned in [1] the representation
reflects to a large extent the human designer’s understanding of the robot task.
In order to generalize the solutions obtained, the automatic design of robot
controllers has become a very important field in autonomous robotics.

A natural approach to this problem is learning by demonstration (LBD) [2],
but other methods such as gestures [3] or natural language [4] are also tech-
niques that have been successfully applied. In LBD authors have tried to sep-
arate ”how” to carry out a task from ”what” to do in a task, that is, what
the task is, focusing their research on systems that could be applied to different
tasks. Within this field of learning by demonstration, relevant results have been
achieved based on training and demonstration stages as in [5]. A technique that
has been demonstrated as very appropriate in the automatic development of
controllers is reinforcement learning [6], [7] where a robot (any agent in general)
learns from rewards and punishments (which are basically some type of error
signal) provided by a teacher in real time. These systems can be applied to dif-
ferent tasks (different ”what”) but they don’t work if, for example, something
fails in the robot (different ”how”).

A new approach to the automatic design process is called cognitive devel-
opmental robotics (CDR). As explained in [8], the key aspect of CDR is that
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the control structure should reflect the robot’s own process of understanding
through interactions with the environment.

In this work we present a solution in which the main objective is to complete a
task driven by a motivation and not by the way the goal is achieved. Thus, if the
environment or the agent itself changes, the way the task is carried out may also
be modified but the agent readapts autonomously. The cognitive mechanism we
have developed is called the Multilevel Darwinist Brain and in the next section
we are going to provide an introduction of its concepts and operation.

2 The Multilevel Darwinist Brain

The Multilevel Darwinist Brain (MDB) is a Cognitive Mechanism that allows
a general autonomous agent to decide the actions it must apply in its environ-
ment in order to fulfill its motivations. The main feature of the MDB is that
the acquisition of knowledge is automatic, this is, the designers do not impose
their knowledge on the system. In its development, we have resorted to bio-
psychological theories [9], [10], [11] within the field of cognitive science that
relate the brain and its operation through a Darwinist process. Each theory has
its own features, as shown in the references, but they all lead to the same con-
cept of cognitive structure based on the brain adapting its neural connections in
real time through evolutionary or selectionist processes. This idea of Darwinism
in the acquisition of knowledge is the basis for the development of the practical
Cognitive Mechanism proposed.

2.1 Cognitive Model

To implement the MDB, we have used an utilitarian cognitive model [12] which
starts from the premise that to carry out any task, a motivation (defined as the
need or desire that makes an agent act) must exist that guides the behavior as a
function of its degree of satisfaction. From this basic idea, several concepts arise:

• Action: set of commands applied to the actuators of the agent.
• World model (W): function that relates sensory inputs in time t with

sensory inputs in time t+1 after applying an action.
• Satisfaction model (S): function that relates sensory inputs with the

satisfaction the agent should perceive in the same instant of time according to
the motivation for the agent.

• Action-perception pair: set of values made up by the sensorial inputs
and the satisfaction obtained after the execution of an action in the real world.
It is used when perfecting world and satisfaction models.

Two processes must take place in a real non preconditioned cognitive mecha-
nism: models W and S must be obtained as the agent interacts with the world,
and the best possible actions must be selected through some sort of internal
optimization process using the models available at that time.



Induced Behavior in a Real Agent Using the Multilevel Darwinist Brain 427

Fig. 1. Block diagram of the MDB

2.2 Constructing the MDB

The main difference of the MDB with respect to other model based cognitive
mechanisms is the way the models are obtained and the actions planned from
them. Its functional structure is shown in Fig. 1. The main operation can be
summarized by considering that the selected action (represented by the current
action block) is applied to the environment through the actuators obtaining new
sensing values. These acting and sensing values provide a new action-perception
pair that is stored in the action-perception memory (Short-Term Memory from
this point forward). Then, the model learning processes start (for world and
satisfaction models) trying to find functions that generalize the real samples
(action-perception pairs) stored in the Short-Term Memory. The best models
in a given instant of time are taken as current world model and current satis-
faction model and are used in the process of optimizing the action with regards
to the predicted satisfaction of the motivation. After this process finishes, the
best action obtained is applied again to the environment through the actuators
obtaining new sensing values.

These steps constitute the basic operation cycle of the MDB, and we will
call it an iteration of the mechanism. As more iterations take place, the MDB
acquires more information from the real environment (new action-perception
pairs) so the models obtained become more accurate and, consequently, the
action chosen using these models is more appropriate.

The block labeled Long-Term Memory stores those models that have provided
succesful and stable results on their application to a given task in order to be
reused directly in other problems or as seeds for new learning processes. Details
about implementing the Long-Term Memory can be found in [13].

Summarizing, there are two main processes that must be solved in MDB: the
learning of the best models predicting the contents of the short-term memory
and the optimization of the action trying to maximize the satisfaction using the
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previously obtained models. In the way these processes are carried out lies the
main difference of the MDB with respect to other mechanisms.

2.3 Learning of Models and Action Optimization

The model search process in the MDB is not an optimization process but a
learning process (we seek the best generalization, which is different from minimiz-
ing an error function in a given instant t). Consequently, the search techniques
must allow for gradual application as the information is known progressively
and in real time. In addition, they must support a learning process through in-
put/output pairs using an error function. To satisfy these requirements we have
selected Artificial Neural Networks as the mathematical representation for the
models and Evolutionary Algorithms as the most appropriate search technique.

Evolutionary techniques permit a gradual learning process by controlling the
number of generations of evolution for a given content of the short-term memory.
Thus, if evolutions last just a few generations per iteration, gradual learning by
all the individuals is achieved. To obtain a general model, the populations of
the evolutionary algorithms are maintained between iterations. Furthermore, the
learning process takes place through input/output pairs using as fitness function
the error between the predicted values provided by the models and the real values
in each action-perception pair.

Strongly related to this process is the management of the Short Term Mem-
ory. The quality of the learning process depends on the data stored in this mem-
ory and the way it changes. The data stored in this memory (samples of the real
world) are acquired in real time as the system interacts with the environment
and, obviously, it is not practical or even useful, to store all the samples acquired
in agent’s lifetime. We have developed a replacement strategy for this memory
that permits storing the most relevant samples for the best possible modelling.
Details can be found in [12].

The search for the best action in the MDB is not a learning process because we
are looking for the best possible action for a given set of conditions. That is, we
must obtain the action whose predicted consequences given by the world model
and satisfaction model result in the best predicted satisfaction. Consequently,
for the actions, a simple optimization problem must be solved for which any
optimization technique is valid.

The operation of the basic mechanism we have presented has been tested in
real agents [12], so the objective of this paper is not to show the operation of
the mechanism in terms of evolution of the models, action optimization or STM
managment, but to study how it operates in a conceptually higher level problem.

3 Induced Behavior in a Real Robot

As commented before, the operation of the MDB is based on an external process
of interaction with the world where the action-perception pairs are obtained,
and an internal process where models are updated and actions selected from the
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current models. Both of these processes occur concurrently on the different world
and satisfaction models present in the model bases. Consequently, even though,
the motivation structure we have established leads the robot to maximize its
“real” satisfaction in terms of rewards obtained from the teacher, internally,
several satisfaction models may arise through interaction with the world that
relate different sensory patterns to expected satisfactions. An example of this is
the real satisfaction (teacher rewards) that can be directly modeled in terms of
the relationship between actions and sounds for a given communication language
through a world model that provides error values and a satisfaction model that
provides the expected satisfaction. But the real satisfaction can also be mod-
eled (if the teacher is consistent in its commands and rewards) in terms of the
perceived distance decrease to the objective when performing an action (world
model) and the related predicted satisfaction (satisfaction model). Obviously, if
the teacher was consistent, any of these satisfaction models lead the robot to
performing the same behavior, although they are not really modeling the same.
One of them models the satisfaction obtained from following the teacher´s com-
mands and has nothing to do with the task the robot is performing. The other
does not take into account the teacher´s commands, but generates high sat-
isfaction values when the behavior corresponds to the one the teacher wanted
(reaching the object). This is what we call cross-induced behavior. Thus, if we
take into account that any satisfaction model is only applicable when its inputs
are present, and that the real satisfaction is obtained through rewards of the
teacher, the MDB will use as satisfaction model the first one of these two when
there is input from the teacher and when there is no input it will resort to the
second one, that is, the induced satisfaction model.

Typical induced behaviors are based on the generation of a behavior pattern
that arises from the task that is directly taught. In this example, the task is very
simple: we want that a real agent (a robot) to reach an object. In the learning
stage it must follow the commands that a teacher provides in order to reach the
object. This teacher rewards or punishes the robot depending on if the action
applied agrees with the command or not. The induced behavior we try to obtain
appears from the fact that each time the robot applies the correct action, the
distance to the object decreases. This way, once the teacher disappears, the robot
can continue with the task because it just has to perform actions that reduce
the distance to the object.

To carry out this example, we have designed the following experiment:

– First of all, the real agent we are going to use is a wheeled robot called
Pioneer 2. It has a sonar sensor array as its main sensorial system and all
the computation is carried out in a laptop that is placed on top of the robot.

– We place the robot in the central point of a simple real environment and the
object it must detect in an area around the robot. In Fig. 2 (left) we display
the experimental setup including the real robot and object.

– A teacher, external to the MDB, must make the robot reach the object
frontally through a set of commands that guide its movements. Possible
commands have been reduced to a group of seven which represent the se-
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Fig. 2. Experimental setup (left) and translation of commands into musical notes
(right)

Fig. 3. World and satisfaction models for operation with and without teacher

mantics of the language used by the teacher to communicate with the robot.
The sensor we use for communication purposes in the robot is a microphone,
and the commands have been translated into musical notes. A possible trans-
lation is found in Fig. 2 (right) but it is not pre-established and we want the
teacher to make use of any correspondence it wants.

– After perceiving a command, the robot can apply one of the following seven
actions: 1-No turn, 2-Small right turn, 3-Medium right turn, 4-Large right
turn, 5-Small left turn, 6-Medium left turn, 7-Large left turn. As we can see,
the actions are in accordance with the possible commands.

– Depending on the degree of fulfilment of a command, the teacher must reward
or punish the robot. To do this, we use a numerical value as a pain or pleasure
signal that is introduced through a keyboard.

In figure 3 we display a schematic view of the two world model satisfaction
model combinations that arise in this experiment. The first world model has two
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inputs (Fig. 3 top): command provided by the teacher and action applied; and
one output: the predicted human feedback. As we can see, this model is related
with robot-teacher communication, so we will call it communication model from
this point forward. In this case, the satisfaction model is trivial because the
satisfaction coincides with the output of the communication model, this is, the
reward or punishment.

In the stage where the teacher is present, the communication model is the
one used to select the action the robot must apply, while other world and satis-
faction models are learnt in the background using the information provided by
the action-perception pairs obtained by the robot through the interaction with
the teacher and the environment. The second world model used has 4 inputs
(Fig. 3 bottom): distance and angle to the object, continuity bit (necessary be-
cause of the symmetry of the sensed angles in this kind of circular robots) and
the applied action; and 3 outputs: distance, angle to the object and continuity
bit predicted after applying an action. The satisfaction model has two inputs:
relative distance covered and angle after applying an action; and one output: the
satisfaction value. The two operation modes are directly derived from the teach-
ing process, because when the teacher is present the MDB can use direct sensorial
information from the teacher (commands and rewards) while in the operation
without teacher the MDB can use just the sensorial information obtained by the
robot (distance and angle to the object). We can see this operation scheme as
divided into two hierachical levels: when the teacher is present, the robot follows
its commands and when he has gone it must use its own perceptions.

To evolve the models we have used a promoter based genetic algorithm [14]
obtaining succesful results in the modelling of the action-perception pairs with
multilayer perceptron artificial neural networks as individuals. The optimization
of the action is very simple in this case as a reduced set of possible actions is
considered, so we test all in the communication model (or in the world model
depending on the operation mode) and select the one that provides the best
satisfaction value.

To show the flexibility of this operation scheme, in Fig. 4 we have represented
the evolution of the mean squared error provided by the best communication
model during 2000 iterations. In the first 500 iterations the teacher provides com-
mands using the encoding (language) shown in Fig. 2 (right). From iteration 500
to iteration 1000 the teacher stops providing commands and the robot uses the
world and internal models. From iteration 1000 to iteration 1500 another teacher
appears using a different language (different relation between musical notes and
commands) and, finally, from iteration 1500 this second teacher dissapears too
and the robot must use the world and satisfaction models again. There are no
data in the operation without teacher because there are neither commands nor
rewards and, consequently, there is no evolution of the communication model.
As we can see in the figure, in the first 500 iterations the error decreases fast
to below 10% which results in a very accurate prediction of the rewards. Con-
sequently, the robot succesfully follows the commands of the teacher. What is
really interesting in this graph, is that the behavior is the same from iteration
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Fig. 4. Evolution of the mean squared error provided by the best communication model
during 2000 iterations

Fig. 5. Number of object captures through iterations

1000 to 1500, this is, when the second teacher appears. The iterations needed to
follow his commands are more or less the same as in the previous case (related
to the iterations needed to empty the action-perception pairs stored in the STM
due to to the first teacher and fill it with the pairs of the second teacher) so the
robot learns the new language and follows the commands quickly adapting itself
to teacher characteristics. Finally, we want to remark that the learning of the
world and internal models occurs in the same way with both teachers because
the sensorial data used in these models (Fig. 3 bottom) are independent of the
language selected by the teacher.

The main result from this experiment is shown on Fig. 5 that representes
the number of object captures as the robot interacts with the world, taking into
account that the teacher provides commands from until iteration 500 and from
iteration 1000 to 1500. As shown in the figure, from this iteration on, the robot
continues capturing the object in the same way the teacher had taught it, so we
can say that the induced learning of the models has been successful. The decrease
of the slope in the figure implies that the robot takes a large number of iterations
(movements) to reach the object using the induced models. This is because it
has learnt to decrease its distance to the object and not the fastest way to do it
(these models aren’t based on obedience but on distance increments). According
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Fig. 6. Actions applied by the Pioneer 2 robot in the operation with (left) and without
teacher (right)

to Fig. 4, when the second teacher appears there is a brief gap with no captures.
In the first 200 iterations there are no captures because we have forced a random
exploration stage to store relevant information in the STM. This was necessary
due to the complexity of the world model motivated by the way the sonar sensor
ring of the Pioneer 2 operates.

Fig. 6 displays a real execution of actions. In the left part, the robot is
following commands by a teacher; in the right it is performing the behavior
without any commands, just using its induced models. It can be clearly seen
that the behaviour is basically the same although a little more inefficient.

Summarizing, this mechanism provides a way to teach a robot to do some-
thing where the world models and satisfaction models are separate. Thus, the
satisfaction models determine the final behavior (“what”) in terms of motivation,
the world models represent the circumstances of the environment and the action
optimization strategy will obtain the “how” from this combination. Thus, any
teacher can teach any machine any behavior it can carry out through a consistent
presentation of sensorial inputs and rewards/punishments and the system will
obtain a model of the world and satisfaction with regards to the teacher com-
mands and expected actions as well as any other induced world and satisfaction
models that relate other inputs with the expected satisfaction.

4 Conclusions

In this paper we have presented an approach, that has been implemented through
the Multilevel Darwinist Brain cognitive mechanism, for performing teaching-
learning processes between humans and robots in a natural manner. The MDB
allows for the induction of satisfaction models from reinforcement or carrot and
stick teaching processes which can be used by the system to operate when no
teacher is present. In addition, the separation of the different types of models in
the architecture provides for a straightforward implementation of the trainable
communication models required for the system to be able to learn to understand
what the teacher means. An example with a real agent has been presented.
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1 Introduction

In this paper we discuss the development and management of Virtual Environ-
ment [1] – a virtual Environment for autonomous robotic agents – with Pro-
cess Landscaping [9], a method to co-ordinate complex and (geographically)
distributed processes like software development processes or business processes.
It enables us to model and analyze distributed processes in a well-structured
way at different levels of abstraction and with special focus on interfaces.

In [1] the authors present Virtual Environment to simulate autonomous
robotic agents. It can incorporate various models of an environment for sim-
ulation as well as the agents under consideration, which can be trained by sim-
ulation. In many circumstances, several physical models and simulations need
to be interconnected and have to take place simultaneously for a larger, more
complex simulation to yield results. This requirement leads to the notion of
distributed modeling and simulation. The architecture of Virtual Environment
therefore serves as a framework of interaction and modeling, including discrete-
event-system specifications (DEVS).

There are some desirable features of the proposed Virtual Environment simu-
lation environment described in [1]. We are convinced, that Process Landscaping
can support us to get these features and to improve therefore the existing release
of Virtual Environment.

At a waste of more than $80 Billion per year for the development of software
systems in the United States, it is more then necessary to create a high level
model structured such as software process landscapes designed with Process
Landscaping. This multi level model will be able to cover multiple agents’ tasks
and behavior in order to derive a suitable architecture with increased mission
robustness and learning ability. Learning is one of the important aspects of
multiagent robotics where robustness and performance is demanded in the face
of environmental uncertainty.

This paper is structured as follows: We first introduce the Virtual Environ-
ment framework, its purpose and some of the already mentioned desirable fea-
tures and improvement ideas for its next release (section 2). Afterwards we give
an overview of Process Landscaping (section 3) and discuss how this method is
able to support Virtual Environment’s purposes (section 4). The paper finishes
by summarizing the main results and by discussing some conclusions.

J. Mira and J.R. Álvarez (Eds.): IWINAC 2005, LNCS 3562, pp. 435–447, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Virtual Environment

The Virtual Environment architecture relies heavily on the structure defined by
the DEVS (Discrete Event System) environment. It defines six different cate-
gories of DEVS models the simulation will be composed from:

– SimEnv (Simulation Environment) and SimMan (Simulation Management)
– control models
– agent models
– physics models
– terrain models and
– dynamic models.

Each of these models is referred to as a high-level model and is constructed
from atomic and coupled models that are not high-level models.

At the heart of Virtual Environment, and the first category of the high-level
models, is the SimEnv coupled model and the SimMan atomic model. SimEnv is
the highest level coupled model in the simulation and is responsible for creating
the instances of all of other models. It acts as the housing for all high-level
models in the simulation.

SimMan is an atomic model where all other models in SimEnv are connected.
It is responsible for coordinating messages between other high-level models, con-
trolling the flow of time in the simulation and tracking information about the
state of the agents in the simulation. All of the high-level models have at least
one input and output port tied to SimMan. The only interconnection of other
high-level models with each other occurs between an agent model and its control
model. SimEnv and SimMan are objects that will be common to every simulation
using the Virtual Environment architecture.

The second type of high-level models is the control model. Those models
store the behavior algorithms that will be used to control the agent, physics,
and terrain models. Agent control models do not directly instruct the agent’s
behaviors. Instead, they indirectly determine what an agent will do by controlling
the agent’s actuators. This will later cause a dynamic model to actually change
the state of an agent.

The third type of high-level models is the agent model. Each of these models
contains sensor models and actuator models. The sensor models contain the
information about the environment that the agent is aware of. The actuators
contain the information that dynamic models use to modify the agent and the
environment.

The fourth type of high-level models is the physics model. These models are
used to model the real world physical phenomena represented in the simulation.
How the agent interacts with the environment and how agent sensors set their
state is encapsulated within the physics models. Frequently in simulations, dif-
ferential equations are used to explain physical phenomena. It is not the goal
of Virtual Environment to act as a differential equation solver, however, a dif-
ferential equation solver could be encapsulated within a DEVS model and be
included in Virtual Environment as a physics model.
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The fifth type of high-level models is the terrain model. The terrain models
contain information about the layout of the environment in the simulation. They
are the maps used by SimMan to determine what type of terrain the agents
occupy.

The sixth and last type of high-level models is the dynamic model. These
models are responsible for making changes to the agent models and the infor-
mation about the agents that SimMan tracks. They make these changes based
on the current state of the environment and each agent’s actuators.

For all the high-level models, SimMan will act as a message liaison between
the models. Each of the models is completely unaware of the fact that there
are other high-level models aside from SimMan. For instance, the sensors on
an agent need to be updated with information external to the agent. SimMan
directs a request from the sensors to an appropriate physics model asking for
the correct state for the sensors. This information is then sent from the physics
model back to SimMan that will redirect the information back to the sensors.
Neither the physics model nor the agent model knows of the existence of the
other.

SimMan also controls the timing and sequence of events that occur in the
simulation. This sequence is broken down into five phases.

In phase 1 SimMan checks to see if the termination conditions for the sim-
ulation are satisfied. If they are, the simulation halts. If not, SimMan proceeds
to phase 2. In this phase, SimMan sends messages to each of the agent’s sensors
instructing them to update their state. The sensors will query SimMan for in-
formation from physics models and update their state. After all the sensors and
physics models are done, SimMan will proceed to phase 3. In this phase a sim-
ilar parlay of messages will occur between the control objects and their agent’s
activators. This phase will end after the control objects have updated the state
of the actuators in the agents they control. During phases 4 and 5, the state of
the agent’s actuators will be analyzed by the dynamic models, which might in
turn modify the state of the environment or the agents themselves. SimMan will
repeat the Virtual Environment cycle until the termination conditions for the
simulation have occurred.

3 Process Landscaping

Process Landscaping is a structured method to model and analyze complex and
possibly distributed processes with special focus on interfaces between and within
these processes. The latter may be geographically distributed business processes
of any kind, but may also describe the activities of autonomous robotic agents
interconnected with each other via geographically distributed different machines.

The method of Process Landscaping can be characterized as an integrated
approach where both activities and their interfaces are treated as first class
entities. The modeling result is a set of process models, called process landscape,
depicting all core activities under consideration on different levels of abstraction.
To attain this process landscape, the following steps have to be undertaken:
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1. Identification of core activities and their interfaces
2. Refinement of activities to process models
3. Refinement of interfaces
4. Refinement of process models
5. Validation of the resulting process landscape

The differentiation between the terms activity and process model indicates
an important feature of Process Landscaping: At the coarse-grained levels of
a process landscape temporal and logical dependencies are not yet modeled.
They only show activities and their input and output data but not the order
of sequences in which the activities are carried out. If we specify the process
landscape in more detail by adding this procedural information, we talk about
process models. This modeling approach allowing incomplete and partial specifi-
cation of process models conforms to Fugetta’s requirement for process modeling
languages (PML) [2].

The identification of core activities and their interfaces (step 1) results in a
top-level process landscape where the existence of an interface between activi-
ties is indicated by bi-directional arrows. Such an interface has to be modeled
every time when there is at least one information exchange between the (in-
terconnected) activities. Both core activities and interfaces can be identified by
requesting the corresponding process owners to all tasks and types of information
to be exchanged.

Refinement of activities to process models (step 2) means to identify and
model all (sub)activities belonging to an activity together with their temporal
and logical dependencies. These (sub)activities have to be arranged within the
process landscape in the order of sequences they have to be carried out. To
keep a comprehensible overview of the process landscape under consideration,
the hierarchical relations between all activities can be arranged additionally as
a tree where the leaves represent refinements of superordinated activities.

Refinement of interfaces (step 3) means to identify all types of data to be
exchanged via this interface together with the corresponding direction of data
flow.

Finally, refinement of process models (step 4) means to describe activities
already arranged in a process landscape on a more detailed level. For this re-
finement step it is important to mention that the resulting more detailed level
always has to consider logical dependencies between the subactivities. Addition-
ally, these subactivities have to be added to the tree mentioned above, repre-
senting now the leaves of the refined process landscape.

Steps 2 to 4 of the modeling steps can be executed in a flexible manner. The
degree of refinement is also flexible and can vary individually for each activity
within a process landscape. The resulting landscape has then to be validated
(step 5) by walkthroughs with process owners where he/she decides whether
both activities and interfaces are properly modeled.

Fig. 1 represents an abstract process model as a result of the Process Land-
scaping modeling approach. Rectangles filled with letters A to F represent ac-
tivities at different levels of abstraction, where the different levels are indicated
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Fig. 1. Overall view of an abstract process landscape

by further rectangles surrounding sets of activities (see e.g. B1 to B9 and E1

to E14 in Fig. 1) and connected to a superordinated activities by dotted lines.
Levels, where activities are connected by bi-directional arrows do not yet con-
sider procedural information. Every activity at those coarse-grained levels can
be refined to process models (see e.g. activities B7,2 to B7,4 in Fig. 1), where
refined interfaces are modeled as small circles, connecting activities by directed
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arrows. Circles 22, 6, 17 and the related directed arrows in Fig. 1 represent e.g.
the refined interface between activities B and E.

The process landscape shown in Fig. 1 has been developed with focus on
logical dependencies between activities. To focus on the distribution aspects of
the modeled activities, Process Landscaping offers a restructuring algorithm to
rearrange the logical view into a locational view of the process landscape by
ordering all activities according to their location. This means that activities
taking place at multiple locations are represented as multiples in the locational
view. Communication features between different locations and within specific
locations can then be better analyzed. To make clear whether we talk about
communication between or within different locations, we talk about external
and internal communication, correspondingly.

In [8] and [9] the analysis approach of Process Landscaping concerning spe-
cific communication features within a distributed landscape is discussed in more
detail. In this paper, we focus on the

– application of the modeling approach to develop the logical view and
– restructuring algorithm to obtain the locational view of autonomous robotic

agents.

These (main) features of Process Landscaping enable us to support Virtual
Environment’s purposes.

The following example shows how to restructure the logical view of a process
landscape into its locational view. Fig. 2 illustrates part of component-based
software development processes. It shows activities of superordinated activity
component engineering posting each component to the quality management after
its implementation (rectangle A) and release (rectangle B) in order to validate
(rectangle QM) the software. Activity error correction receives an error report
afterwards and decides whether the tested component has to be improved or
whether it can be sent to activity adding component to system.

Fig. 2. Example process landscape in its logical view
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Fig. 3. All possible data flows via interfaces of Fig. 2

B

A

A

B

B

B

A

A

A

B

 o1

 o5

 o4

 o3

 o2

 o1

 o2

 o3

 o4

 o5

31

C

B

B

C

C

C

B

B

B

C

 o1

 o5

 o4

 o3

 o2

 o1

 o2

 o3

 o4

 o5

C

QM

QM

C

C

C

C

 o1

 o2

 o1

 o2

 o3

 o4

 o5

3332copy

QM

B

B

QM

B

B

B

 o1

 o5

 o4

 o3

 o2

 o1

 o2
32

QM

C

C

QM

C

C

C

 o1

 o5

 o4

 o3

 o2

 o1

 o2

34

C

C

D

C

C

C

 o1

 o5

 o4

 o3

 o2

 o6

34copy

 A         component engineering

B         creating release

C         error correction

 D         component integration

QM     quality management

31                 component implementation

32 , 32copy    component

34 , 34copy    tested component

       33                 error report new component



442 M. Fathi and U. Wellen

Fig. 4. Existing data flows via interfaces of Fig. 2

All component-engineering activities take place at five different locations o1 to
o5 (see tabs at activities in Figure Fig. 2, whereas quality management activities
only take place at locations o1 and o2.
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Fig. 5. Locational view of example process landscape of Fig. 2
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Fig. 3 shows all possible data flows by relating each interface of the logical
view with each activity of the locational view (where each activity is modeled
as often as there are related location attributes). A modeler now can choose the
subset of truly existing data flows depending on the modeled context, resulting
in those data flows shown in Fig. 4.

Fig. 4 makes clear why the number of interfaces and accesses may be smaller
than the number of all those possible: All component engineering activities taking
place at location o1 communicate only with quality management activities at the
same location. This is the same for component engineering activities at location
o2, because they – together with component engineering activities at locations
o3, o4 and o5 – communicate only with the quality management at location
o2. Abbreviation int related to interfaces 31 to 34 in Fig. 4 indicates internal
communication, abbreviation ext indicates external communication.

Connecting all process fragments of Fig. 4 in such a way that each activity
with the same name and the same location attribute exists only once results in
the process landscape shown in Fig. 5. External interfaces connecting different
locations are arranged outside the gray-shaded locations o1 to o6. They connect
the six locations with each other and consequently form the basis of external
communication, which now can be better analyzed in this locational view of the
process landscape.

To apply the modeling and restructuring steps of Process Landscaping we use
different types of Petri nets as underlying formal basis. In [9] these different types
of Petri nets and their relations to each other are described in a detailed way. In
this paper we do not discuss the formal basis in detail but focus on the methodical
concept of using Process Landscaping to manage Virtual Environment.

4 Using Process Landscaping to Manage Virtual
Environment

Process Landscaping has been presented as a suitable method for modeling and
analyzing distributed processes with special focus on interfaces and commu-
nication aspects on different levels of abstraction. Petri Nets as the underlying
notation enable us to use DEVS as general simulation framework of co-operation
and communication like Virtual Environmen does.

Fig. 6 shows how to design Virtual Environment as a distributed landscape
with Process Landscaping. All components (atomic models) of SimEnv, the
highest-level coupled model of Virtual Environment, are represented as activi-
ties at the top level of a process landscape. Relations between SimEnv ’s compo-
nents are indicated initially as bi-directional arrows. SimMan is the only activity
connected via interfaces to all other activities. This fact already indicates the
importance of SimMan: It is responsible for coordination of messages between
other high-level models, controlling the flow of time, and tracking information
about the state of the agents under consideration during simulation.

The advantage of modeling Virtual Environment as a process landscape is
the use of only one model instead of three as presented in [1], figures 10, 11, 12.
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Fig. 6. Components of coupled model ”SimEnv” - logical view

The relations between SimEnv and its atomic models are indicated at a course-
grained level of a process landscape; more detailed information is shown at a
more detailed level as shown in Fig. 7. There we consider the interfaces between
SimMan, Control and the components of an agent – Sensor and Actuator. Petri
nets ensure the consistency between the different levels of process landscape
SimEnv as underlying formal basis, where refinements of sets and places are
common and well defined [7], [9].

Fig. 7. Refinement of agent and its interfaces to SimMan and Control
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Because Petri nets are used as discrete-event system specifications, process
landscape SimEnv can be simulated to analyze control flow and data flow. In
other words, we are able to analyze the initialization of SimEnv ’s atomic models
together with all coupling information and all simulation cycles including differ-
ent states of SimEnv ’s components until the termination conditions are made
and the simulation ends.

One important feature of Virtual Environment we did not consider yet is
the distribution of different robotic agents to a set of machines geographically
distributed and connected in a hardware network. Whereas co-ordination tasks
within a SimEnv-model can be analyzed in the logical view, amount of messages
between SimEnv-models can be analyzed in the locational view of the process
landscape under consideration (see Fig. 6). With the latter view we can identify
models with excessive communication and arrange them on the same machine
to optimize communication efficiency.

Fig. 8. From logical to locational view of SimEnv

Fig. 8 shows one distribution of different SimEnv i, where i = 1, . . . , 4, to
three machines related to each other via a hardware network. Simulation of this
distribution can identify optimization possibilities concerning interaction time
and cost of the distributed SimEnv-models. The next step is then the rear-
rangement of the models among the different hardware locations and a further
simulation run.

Summarizing the procedure to find the optimal distribution of several SimEnv-
models to different machines, we are able to identify the best solution by sim-
ulation of the locational view of the process landscape under consideration. In
other words, Process Landscaping offers a suitable way for a task, declared as a
very difficult [1].
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5 Conclusions

In this paper we have discussed the application of Process Landscaping to im-
prove the existing release of Virtual Environment by considering some desirable
features not yet implemented with the available release. We have shown e.g.
how Process Landscaping can support us to find the optimal distribution of
coupled models SimEnv among different computers. More details of the Process
Landscaping Modeling approach can be found in [3] and [4]. The restructuring
algorithm is further described along a software development example in [5].

Our future work will focus on the further development of the process land-
scape discussed above and on the implementation of an improved Virtual Envi-
ronment.
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Abstract. In this paper a special focus on the relationship between sen-
sitivity and stability in a dynamic selective visual attention method is
described. In this proposal sensitivity is associated to short-term mem-
ory and stability to long-term memory, respectively. In first place, all
necessary mechanisms to provide sensitivity to the system are included
in order to succeed in keeping the attention in our short-term memory.
Frame to frame attention is captured on elements constructed from im-
age pixels that fulfill the requirements established by the user and gotten
after feature integration. Then, stability is provided by including mech-
anisms to reinforce attention, in such a way that elements that accept
the user’s predefined requirements are strengthened up to be configured
as the system attention centre stored in our long-term memory.

1 Introduction

The name dynamic selective visual attention (DSVA) embraces a set of image
processing mechanisms for focusing vision on those regions of the image where
there are relevant local space-time events. These DSVA mechanisms help find,
using an active search process, the relevant information at each moment to per-
form the interaction task with the system [1], [2]. In this paper a special focus
on the behavior of sensitivity and stability in our visual attention method is
pursued. Sensitivity and stability are terms widely expressed in dynamic sys-
tems [3]. In systems associated to image sequences sensitivity and stability have
also been explored due to their importance [4], [5]. Our intention is to introduce
these concepts in dynamic visual attention, associating sensitivity to short-term
memory and stability to long-term memory, respectively. Fig. 1 shows the block
diagram that illustrates the two components of sensitivity and stability of the
DSVA task as studied in this paper.

As also shown in Fig. 1, our solution to DSVA defines a model with two
types of processes: bottom-up processes (based on the scene), which enable to
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extract features from the input image and allow to create the elements of in-
terest; and top-down processes (based on the object) by means of which the
features are integrated. The selection of the interest elements of the scene starts
with setting some criteria based on the features extracted from the elements
(Feature Extraction). This way, in first place, all necessary mechanisms to pro-
vide sensitivity to the system are included in order to succeed in capturing the
attention. Frame to frame attention is derived (Attention Building) to elements
constructed from image pixels that fulfill the requirements established by the
user and gotten after a Feature Integration. On the other hand, stability has to
be provided to the system. This has been achieved by including mechanisms to
reinforce attention (Attention Reinforcement), in such a way that elements that
accept the user’s predefined requirements are strengthened up to be configured
as the system attention centre. Thus, the relationship between sensitivity gotten
in the Short-Term Memory (Attention Building) and stability obtained in the
Long-Term Memory (Attention Reinforcement) is developed in our proposal.

Attention 
Building 

INPUT
Input Image 
GL[x,y,t] 

Feature 
Extraction 

Feature 
Integration 

Attention 
Reinforcement 

Interest 
Map 

IM[x,y,t] 

….. Grey Level 
Bands 

GLB[x,y,t] 

OUTPUT
Long-Term Memory 

LTM[x,y,t] 

Short-Term Memory 
STM[x,y,t] 

Top-dow n 

Bottom -up 

Sensitivity 

Stability 

Fig. 1. DSVA block diagram with special emphasis on Attention Building and Atten-
tion Reinforcement

In previous works of our research team some methods based on image segmen-
tation from motion have already been used. These methods are the permanency
effect and the lateral interaction [6]. Based on the satisfactory results of these
algorithms [7], [8], in this paper we propose to use mechanisms of charge and dis-
charge together with mechanisms of lateral interaction to solve the fundamental
aspects of sensitivity and stability in the DSVA task.
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2 Short-Term and Long-Term Memory in DSVA Method

Short-term memory and long-term memory are expressions taken from cogni-
tive psychology. Short-term memory (STM) -also called working memory or
functional memory- is the cognitive system that allows keeping active a limited
amount of information for a brief period of time [9], [10], [11], [12]. It was thought
to have two functions: storing material that we have to recall in a few seconds
and providing a gateway to long-term memory (LTM) [13]. LTM contrasts with
STM in that information can be stored for extended periods of time. In standard
theories of memory [13], [14], information can be stored in LTM only after it has
been stored in STM, and even then, storage in LTM is a probabilistic event.
Originally, it was proposed that the probability of storage in LTM is a function
of the time an item was maintained in STM. More recently, Anderson [15] sug-
gested that the probability of storage is a function of the number of times an
item enters STM. LTM has a strong influence on perception through top-down
processing. This is the process by which our prior knowledge affects how we per-
ceive sensory information. LTM influences what aspects of a situation we pay
attention to -allowing us to focus on relevant information and disregard what is
not important [16].

In the DSVA method proposed in this paper all necessary mechanisms neces-
sary to obtain a Short-Term Memory and a Long-Term Memory are explained.
The mechanisms used to generate the Short-Term Memory endow the system of
sensitivity, as it includes elements associated to interest points in the memory at
each frame. But, the Short-Term Memory introduced is noisy, as blobs that are
not of a real interest to the user may appear. In order to generate the Long-Term
Memory, that is to say, in order to provide stability, some cues are included for
inserting into the Long-Term Memory all elements reinforced in the Short-Term
Memory through a persistency measure.

3 Sensitivity Through Attention Building

The purpose of Attention Building is to select and to label zones (blobs) of
the objects (figures) to pay attention on. See, therefore, that after processing
Attention Building, not the complete figures are classified, but each one of the
blobs, understood as homogeneous connected zones that form the figures, are
marked with different labels. Obviously, the blobs are built from image points
that fulfill the requisites established by the guidelines of the observer (points
of interest). Fig. 2 shows a process scheme for Attention Building. The output
of Attention Building is precisely called Short-Term Memory. In our case, only
blobs constructed in the Short-Term Memory will potentially form the figures of
the system’s Long-Term Memory.

In our proposal the blobs of the Short-Term Memory are built from the
information provided through the so called Interest Map and from the input im-
age divided into Grey Level Bands. The Interest Map is obtained by performing
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Classification in 
Grey Level Bands 

Input Image 
GL[x,y,t] 

Grey Level Bands 
GLB[x,y,t] 

Short-Term Memowy 
STM[x,y,t] 

Short-Term M emory 
Generation

Interest 
Map 
IM[x,y,t] 

Fig. 2. Attention Building process scheme

feature integration, both of motion and shape features. For each image pixel, in
the Interest Map the result of a comparison among three classes - ”activator”,
”inhibitor” and ”neutral”- is stored. The interest points are those points of the
Interest Map labeled as ”activator” points.

3.1 Classification in Grey Level Bands

Classification in Grey Level Bands transforms the 256 grey level input images
into images with a minor number of levels. These new images are called images
segmented into Grey Level Bands (GLB). The reason to working with grey level
bands is twofold. (1) Some traditional methods of motion detection are based
on image differencing. The noise level diminishes for little changes in grey level
(or luminosity) of a same object between two consecutive images, when joining
a range of grey levels into a single band. (2) On the other hand, a decrease of
the computational complexity is achieved, bearing in mind the great parallelism
used in the algorithms of the proposed model. We now calculate in parallel in
the order of magnitude of grey level bands n, and not of grey levels N , where
N > n.

The calculus of the grey level band of pixel [x, y] at t, GLB[x, , y, t], is ex-
pressed in Equation 1. As you may notice, this is just an easy scale transforma-
tion.

GLB[x, y, t] =
GL[x, y, t] · n

GLmax − GLmin + 1
+ 1 (1)

where n is the number of grey level bands in which the image is split, GLmax

is the maximum and GLmin are the minimum grey levels, respectively, of the
input image.
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3.2 Short-Term Memory Generation

The objective of Short-Term Memory Generation is firstly to select and to label
(to classify numerically) image blobs associated to pixels of interest -pixels that
possess dynamic features in predefined numerical intervals. Secondly, it elimi-
nates the blobs whose shape features do not correspond with the pre-established
ones. In order to achieve these aims, the images in Grey Level Bands are seg-
mented into regions composed of connected points whose luminosity level belongs
to a same interval (or grey level band) and to select only connected regions that
include some ”activator” point (or, point of interest) in the Interest Map. Each
region or zone of uniform grey level is a blob of potential interest in the scene.

The idea consists in overlapping, as with two superposed transparencies, the
Grey Level Bands image of the current frame (t) with the Interest Map image
built at the previous frame (t − 1). At t, only blobs of the Grey Level Bands
image are selected where at least one point of interest fell at t−1 in the Interest
Map. Nevertheless, not the total blob is taken; pixels that coincide with points
of the Interest Map classified as ”inhibitors” are eliminated. The computational
model used to perform the preceding steps incorporates the notion of lateral
interaction, which enables that the points of interest flood their zones of uniform
grey levels whilst eliminating all points classified as ”inhibitors”. In order to
achieve the aims of Short-Term Memory Generation, the processes shown in
Fig. 3 are performed.

D ivision in 
Bands 

Grey Level 
Bands 
GLB[x,y,t] 

Blobs 
G eneration 

GLBi[x,y,t]

Blobs 
G eneration 

GLBn[x,y,t]

Blobs 
G eneration 

GLB1[x,y,t] 

Blobs 
Sum m ation 

Short-Term 
Memory 
STM[x,y,t] 

    .....

Interest Map
IM[x,y,t] 

STMi[x,y,t]

STMn[x,y,t]

STM1[x,y,t] 

Fig. 3. Short-Term Memory Generation process scheme

Division in Bands. Division in Bands obtains from an image in grey level
bands, GLB[x, y, t], n binary images GLBi[x, y, t] (one image for each band).
Each one of these images, GLBi[x, y, t], stores a value of 1 for a pixel whose grey
level band is i and a 0 in the opposite case. That is to say (Equation 2):

GLBi[x, y, t] =
{

1, if GLB[x, y, t] = i
0, otherwise (2)
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Blobs Generation. For each GLBi[x, y, t], the different connected regions that
include an ”activator” point in the Interest Map and that do not correspond to
”inhibitor” points in the Interest Map are labeled. Thus, Blobs Generation gets
and labels for each grey level band, pixels belonging to connected regions that
include any ”activator” point in the Interest Map but do not correspond with
”inhibitor” points of the Interest Map. Its output, Short-Term Memory for Grey
Level Band i, STMi[x, y, t], stores for each pixel the label corresponding to the
generated blob if it belongs to the blob, or the value 0. Let us define vactivator

as the value given to the points of interest (”activators”) of the Interest Map,
vneutral as the value for the ”neutral” points of the Interest Map, and vinhibitor

as the value for the ”inhibitor” points of the Interest Map. Let also NR be the
number of rows of the image, and NC the number of columns of the image.
Firstly, all points where GLBi[x, y, t] = 1 are assigned an initial and provisional
label value as shown in Equation 3:

STMi[x, y, t] =




x ∗ NC + y + 1, if GLBi[x, y, t] = i ∧ IM [x, y, t] = vactivator

NR ∗ NC + 1, if GLBi[x, y, t] = i ∧ IM [x, y, t] = vneutral

0, otherwise
(3)

where IM [x, y, t] is the value of the Interest Map at pixel [x, y]. This value
corresponds to (x ∗NC + y + 1) when IM [x, y, t] = vactivator, to a greater value
than NR∗NC when IM [x, y, t] = vneutral and to value 0 in the rest of the cases.
In other words, if pixel [x, y] belongs to the grey level band and corresponds to
a point of interest of the Interest Map, the tentative value for it is a function
of its proper coordinate. Now, if the pixel belongs to the grey level band but
corresponds to a ”neutral” point of the Interest Map, the provisional value given
to it is a value greater than any possible value of the coordinate function. In any
other case, the value is 0. This initial value assignment to all pixels serves to get
an agreement in the labels of the blobs after a negotiation (consensus) period.
The label value for each pixel [x, y] is iteratively calculated as the minimum
value of the proper value of the pixel and the value of its 8 surrounding pixels.
Of course, there will only be collaboration among neighboring pixels that possess
an initial value greater than 0. The iterative calculus up to obtaining a common
value for all pixels of a same blob is shown in Equation 4.

STMi[x, y, t] = min(STMi[α, β, t]),∀[α, β] ∈ [x ± 1, y ± 1] (4)

whenever 0 ≤ STMi[α, β, t] ≤ NR ∗ NC + 1.
Thus, blobs are labelled with the ordinal corresponding to the point with the

lowest coordinate (if taking as origin the superior left image pixel).

Blobs Summation. Lastly, Blobs Summation gets the Short-Term Memory,
STM [x, y, t], as the result of summing up all blobs computed at each of the n
Short-Term Memories for Grey Level Band i, STMi[x, y, t], where i = 1, 2, ..., n.
The final value for each pixel [x, y] is the maximum value of the n STMi[x, y, t].
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Image at t-1

Image at t

Fig. 4. Short-Term Memory for a couple of images

Only values that possess a label value less than NC ·NR + 1 are considered, as
shown in Equation 5.

STM [x, y, t] = maxiSTMi[x, y, t]),∀i ∈ [1..n]|STMi[x, y, t] < NR∗NC+1 (5)

Notice that this maximum selection operation has to be performed for all ele-
ments of matrixes STMi[x, y, t] to obtain the corresponding element in a single
matrix of blobs, STM [x, y, t]. This way all blobs of all grey level bands have
been united and labeled with a common value. Fig. 4 shows the contents of the
Short-Term Memory after processing all steps of Attention Building.

See also the sensitivity of the task through the contents of the Short-Term
Memory in two consecutive frames as shown Fig. 4 taken from the picture ”The
Living Daylights”. The input sequence has been captured by a camera in con-
stant translational movement following the motion of the horse riders. Elements
of the Short-Term Memory are composed of connected pixels that are not drawn
in black color. The attention focus pursued in this case is the set of horses and
horsemen. As you may notice, all interest elements are really detected. Neverthe-
less, other elements appear that neither are of the user’s interest. The example
shows the necessity for stability.

4 Stability Through Attention Reinforcement

The mechanisms used to generate the Short-Term Memory endow the system
of sensitivity, as it includes elements associated to interest points (”activators”)
in the memory at each frame. Unfortunately, in the Short-Term Memory scene
blobs whose shape features do not correspond to those defined by the observer
may appear at a time instant t. This is precisely because their shape features
have not yet been studied. But, if these blobs shape features really do not seem
to be interesting for the observer, they will appear as ”inhibitors” in t+1 in the
Interest Map (now, in t + 1, their shape features will have been obtained). And,
this means that in t + 1 they will disappear from the Short-Term Memory.

In order to obtain at each frame only blobs with the desired features, Atten-
tion Reinforcement performs an accumulative mechanism followed by a thresh-
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Attention Charge 
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Long-Term M emory 
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Fig. 5. Scheme for ”Attention Reinforcement”

old. Accumulation is realized on pixels that have a value different from 0 (pixels
that do not belong to labeled blobs) in the Short-Term Memory. The result of
this accumulative process followed by a threshold offers as output the Long-Term
Memory, LTM [x, y, t]. More concretely, pixels that appear with a value different
from 0 in the Short-Term Memory reinforce attention, whilst those that appear
with a value 0 diminish the attention value.

The process manages to keep activated in a stable way a set of pixels that
belong to a group of objects (figures) of the scene that are interesting for the
observer. Fig. 5 shows the decomposition of Attention Reinforcement into At-
tention Charge Memory Calculation and Long-Term Memory Calculation.

4.1 Attention Charge Memory Calculation

Attention Charge Memory Calculation performs an accumulative computation
on the Short-Term Memory to get the Attention Charge Memory Ch[x, y, t].
The idea underlying Attention Charge Memory Calculation is that pixels that
belong to a blob of the Short-Term Memory through time reinforce attention
whilst all other ones decrease attention. The accumulative computation [1], [6],
[7] takes the form of Equation 6, based on the more general charge/discharge
accumulative computation mode [17].

Ch[x, y, t] =




max(Ch[x, y, t − 1] − D,Chmin),
if STM [x, y, t] = 0

min(Ch[x, y, t − 1] + C,Chmax),
if NC ∗ NR + 1 > STM [x, y, t] > 0

(6)

where Chmin is the minimum and Chmax is the maximum value, respectively,
that the values stored in the Attention Charge Memory can reach, and C and
D are the charge increment and decrement, respectively, in the memory compu-
tation. The charge value Ch[x, y, t] goes incrementing up to Chmax, if pixel
[x, y] belongs to a blob of the Short-Term Memory, and goes decrementing
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down to Chmin if the pixel does not. Charge value Ch[x, y, t] represents a mea-
sure of the persistency of a blob in the Short-Term Memory on each image
pixel [x, y].

4.2 Long-Term Memory Calculation

Long-Term Memory Calculation produces, starting from the Attention Charge
Memory, the points that configure the Long-Term Memory, labeling the figures
obtained. The focus is in form of figures, obtained by the union of the connected
blobs that have appeared successively in the Short-Term Memory and whose
value in the Attention Charge Memory is greater or equal to a given threshold,
θ. In the output, the label corresponding to the figure is stored; value 0 is assigned
to all pixels that do not belong to any figure. Firstly, the Long-Term Memory
at pixel [x, y] is assigned an initial and provisional value (yet not agreed with
the neighbours) corresponding to a function of the coordinate of the pixel, if the
charge value overcomes threshold θ (see Equation 7):

LTM [x, y, t] =
{

x ∗ NC + y + 1, if Ch[x, y, t] > θ
0, otherwise (7)

Next, in an iterative way up to reaching a common value for all pixels of a same
figure (by calculating the minimum value of each pixel and its 8 surrounding
neighbours), a calculation is performed according to Equation 8:

LTM [x, y, t] = min(LTM [α, β, t]),∀[α, β] ∈ [x± 1, y ± 1]|0 < LTM [α, β, t] (8)

Fig. 6 now shows the contents of the Long-Term Memory after processing all
steps of Attention Reinforcement. Notice that we got the desired stability.

Image at t-1

Image at t

Fig. 6. Long-Term Memory for a couple of images

5 Conclusions

In this paper the relationship between sensitivity and stability in our particular
DSVA method has been described. In the proposal sensitivity has been associated
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to Short-Term Memory and stability to Long-Term Memory, respectively. The
generation of the Short-Term Memory, and hence the coming out of sensitivity,
is related to task Attention Building, whereas Long-Term Memory is obtained
after Attention Reinforcement, getting the desired stability to visual attention.

As described, Attention Building is achieved by means of two main steps,
namely Classification in Grey Level Bands and Short-Term Memory Generation,
getting as output figure blobs in the Short-Term Memory in a noisy way. On the
other hand, Attention Reinforcement is divided into Attention Charge Memory
Calculation and Long-Term Memory Calculation, and obtains persistent figures
through time in a stable Long-Term Memory.
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Abstract. How does visual saliency determine the attention given to
objects in a scene? Viewers’ eye movements were recorded during the
inspection of pictures of natural office scenes containing two objects of
interest. According to the Itti and Koch algorithm one object had lower
visual saliency relative to the other that was visually complex. We varied
the purpose of picture inspection to determine whether visual saliency is
invariably dominant in determining the pattern of fixations, or whether
task demands can provide a cognitive override that renders saliency as of
secondary importance. When viewers inspected the scene in preparation
for a memory task, the more complex objects were potent in attracting
early fixations, in support of a saliency map model of scene inspec-tion.
When the viewers were set the task of search for the lower-saliency target
the effect of the distractor was negligible, requiring the saliency map to
be built with cognitive influences.

1 Introduction

How do we decide where to look first when shown an image of a natural scene?
Itti and Koch [1] have developed a computational procedure for the determi-
nation of visual saliency of images such as photographs that also serves as a
model of where attention should be directed when we look at those images. The
model relies upon the low-level visual characteristics of the image to determine
saliency and hence where attention should be directed, and in what order atten-
tion should be moved around the image. In the case of two-dimensional static
image these low-level characteristics are colour, intensity and orientation, and
with dynamic displays the relative motion of objects would also contribute to
their saliency values. Separate saliency maps are first computed for each of these

J. Mira and J.R. Álvarez (Eds.): IWINAC 2005, LNCS 3562, pp. 459–468, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



460 G. Underwood et al.

characteristics, and the maps are then combined linearly to find the saliency
peak using a winner-take-all network. A change in any of the three character-
istics results in an increase in the saliency value assigned to that region of the
picture. So, a picture of a blue ocean and blue sky with a white cloud in the
sky will deliver high saliency values for the horizon (orientation change), and for
the cloud (colour, intensity and orientation change). The model predicts that
areas of high saliency should attract the viewer’s attention, and that eye fixa-
tions should be directed first to the region of highest saliency, then to the area
of next highest saliency, and so on. When attention has been directed towards
an object, a process of ’inhibition of return’ lowers the saliency value of that
location, enabling attention to be directed to the next area of interest.

Parkhurst, Law and Niebur [2] have evaluated the Itti and Koch model
against the performance of human viewers in a study in which a variety of
images were shown. The images included colour photographs of natural scenes
as well as computer-generated fractals, and each was displayed for 5 sec. Four
participants were instructed to ”look around at the images” while their eye move-
ments were recorded. A modified model was evaluated in their study, such that
central regions were given higher saliency values than peripheral locations. This
modification takes account of the decline in visual sensitivity from the central
visual field to the periphery of vision, and so gives priority to a central object
over other objects with equal saliency but placed in the periphery. The model
performed well, with the saliency value of the regions within an image predicting
the order of fixations, especially for the first few fixations. The modified model,
with greater weighting given to central regions over the periphery, was more
successful than a model using a uniform visual field.

When viewers look around a picture with no specific goal, their attention and
their eye movements are attracted to areas of high visual saliency. Nothdurft [3]
has also suggested that saliency has effects in visual search. The task used in
his experiments was to detect a single item that was unlike the other items
in the display. The displays were formed of a large number of short lines of
varying orientation, and a single item was made more salient than the others
in a number of ways, including increasing the intensity and by introducing a
short movement. Nothdurft concluded that high saliency in an item attracts
focal attention and is responsible for the ’pop-out’ effect whereby an item of
different colour or different orientation will stand out from other items and will
be found without detailed item-by-item scrutiny. Focal attention is then used
to identify the detailed properties of the selected item. The question then arises
as to whether searching a natural scene will show the same effects of saliency
as Nothdurft’s texture-like line displays, with a highly salient object inevitably
attracting focal attention, or whether the nature of the task can override visual
saliency and result in a highly salient object being ignored.

Visual search is clearly open to top-down cognitive influences. When we look
around a kitchen searching for a bread knife, or a chopping board, we will di-
rect our attention to the most likely locations rather than to the most visu-
ally salient objects in view, such as gleaming metal pans or rightly coloured
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bowls. Underwood, Jebbett and Roberts [4] have demonstrated the selective na-
ture of searching for information in digitized photographs with an eye-tracking
study. Viewers performed a sentence verification task in which they had to judge
whether or not a sentence correctly described some aspect of a photograph of
a natural scene. Sentences could appear before or after the picture. When the
picture appeared first the task was essentially one of encoding as much detail
as possible, not knowing the subject of the sentence. Participants characteristi-
cally made a large number of fixations over the whole picture, before indicating
that they were ready to read the sentence. When participants were able to read
the sentence first they were able to focus their attention on the subject of the
sentence once the picture was displayed. They made fewer fixation overall, and
their fixations were guided to the objects described in the sentence. For example,
in a picture of road scene, which showed a car parked near to a phone box,
the sentence declared correctly that the car was parked next to a phone box, or,
incorrectly that it was next to a mailbox. When the sentence was read before
seeing the picture, viewers characteristically looked at the car, and then at the
phone box. After very few fixations they would then press the response key to
indicate that the sentence was true or false. Their search was determined by their
knowledge rather than by the saliency map of the picture. Other modifications
of the search by top-down factors has been reported in a range of tasks [5],[6],[7]
with the suggestion that searches are influenced by relevance of objects to the
specific task.

The two experiments here compare the attention given to objects in the same
pictures when the task is changed from general encoding for a later memory test,
to a search for an item defined by its natural category membership. This target
item had lower visual saliency than a distractor, and so the experiments were
used to answer the question of whether task demands can override the attentional
pull of a high saliency object.

2 Experiment 1: Inspecting for Remembering

In this experiment viewers looked at a set of pictures in preparation for a mem-
ory test. They were given as long as they wanted to look at each picture, and
their eye movements were recorded as they did so. Two objects of interest were
present, although this was not indicated to the participants. A high-saliency ob-
ject was designated as a

”

distractor and a lower-saliency object as a

”

target”.
(These labels were used for consistency with Experiment 2, in which the par-
ticipants would search for the target.) This task was close to the free-viewing”
task used by Parkhurst et al. [2], and was expected to demonstrate a dominance
for the high-saliency distractor object. To avoid the problem addressed by the
Parkhurst et al. modified saliency model, namely, the decline in visual sensitivity
in peripheral vision, all objects of interest were displayed at either 3 deg or 6
deg from the initial fixation point. These two eccentricities were used to deter-
mine the interference between competing objects that are nearer or further from
each other.

”

”
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2.1 Method

The images presented for inspection were 48 digital photographs of desktop office
scenes. A further 8 photographs were used to give participants familiarity with
the images and practice with task. Pictures subtended 11.6 deg by 15.4 deg when
displayed on a colour monitor and viewed at a distance of 60 cm. Within each
scene there was a piece of fruit that is designated here as a target although in no
sense was it identified to the participants as having special significance. Different
pieces of fruit were used in different pictures, and when two similar items were
used, their orientation was changed between pictures. There was also a distractor
object. Other objects such as papers, books, general desktop equipment and
computers were visible. The target and distractor were of importance only to
the experimental design, and the viewer’s attention was not directed towards
them in the task instructions. These objects were placed 3 deg or 6 deg from
centre, with target and distractor on opposite sides of the picture. In addition,
one third of the pictures had no distractor. There were 8 pictures in each of the
6 experimental conditions: target at 3 deg or at 6 deg, and distractor at 3 deg,
at 6 deg, or absent.

Each picture was analysed using the Itti and Koch [1] saliency map program,
to determine the saliency values of each object. The pictures used in the exper-
iment all had the characteristic of the distractor object being the most salient
object shown, and the target being the next most salient object.

Fig. 1. One of the pictures used in the experiments. All of the pictures showed desktop
office scenes, with a range of objects visible. Also shown here is the output of the Itti
and Koch program that determines the visual saliency of the regions within the picture.
In this case the most salient object is the food jar on the left, with the lemon being
the next most salient object, and then the bunch of keys on the right
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An example of one of the pictures used in the experiment is shown in Fig. 1.
While participants looked at the pictures, their eye movements were recorded
using an SMI EyeLink system recording eye positions at 250 Hz and with a
spatial accuracy of 0.5 deg. A chin rest was used to ensure a constant viewing
distance.

The participants were 20 undergraduates who were paid for their involvement.
All volunteers had normal or corrected-to-normal vision, and all were paid for
their participation. After calibrating the eye tracking equipment they were in-
structed that they would see a set of pictures, and that they would be tested
for their memory of them at the end of the experiment. The 8 practice pictures
were then shown, followed by a two-alternative forced-choice task in which two
pictures were shown on the screen, with the task being to say which one of them
had been shown previously. The 48 test pictures were then shown in a different
random order for each participant, with each picture remaining on the screen
until the participant pressed the space bar to indicate that they were ready for
the next one.

2.2 Results

The number of eye fixations made prior to fixation of the target and the distrac-
tor were compared at the two eccentricities (3 deg and 6 deg) by separate analysis
of variance for the two objects. The numbers of fixations made prior to inspection
of the two objects are shown in Fig. 2, where it can be seen that there was earlier
fixation of near distractors (F = 20.66, df = 1, 19, p < .001). The position of the
target also influenced fixation of the distractor (F = 23.08, df = 1, 19, p < .001),
with fewer fixations required before inspection of the distractor when the target
was shown at 6 deg rather than 3 deg. The distractor was fixated earlier when
it was positioned nearer to the initial point of fixation, and when the target was

Fig. 2. Number of fixations made prior to inspection of the high-saliency distractor
object (a manufactured object such as a food package) in Experiment 1
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positioned furthest away. This analysis confirmed the effect of the target upon
fixation of the higher-saliency distractor.

A second analysis was conducted on the number of fixations prior to fixation
of the target object. These fixations are shown in Fig. 3. Target position was not
a reliable factor (F = 1.29, df = 1, 19, n.s.), but distractor position did influence
target inspection (F = 8.52, df = 2, 38, p < .001). Distractors were placed at
3 deg from the centre of the picture, at 6 deg, or absent altogether. Paired
comparisons indicated that compared to the baseline condition of no distractor
being present, there was an increase in the number of fixations when distractors
were placed at 3 deg and at 6 deg. This analysis confirmed the effect of a high-
saliency distractor object upon the time taken to attend to a lower-saliency
object.

Fig. 3. Number of fixations made prior to inspection of the low-saliency target object
(a piece of fruit) in Experiment 1

The course of inspection of the targets and distractors can be seen in Fig. 4,
which compares the cumulative probabilities of fixation over the viewing interval.
All targets and distractors are considered here, and the Fig. confirms that the
distractors are fixated earliest. This advantage in the fixation of the high-saliency
objects is apparent most clearly during the first few seconds of the display being
available.

Experiment 1 confirmed the importance of visual saliency in the allocation
of attention to objects shown in a scene. It is important to note here that the
object designated as distractor has the highest saliency according to the Itti and
Koch [1] model, and that the target had lower saliency. There was no special
significance of these objects as targets and distractors for the viewers, who had
the task of looking at the pictures in order to remember them for a memory test.
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Fixation number (following central fixation)

Fig. 4. Probability of target and distractor fixation as a function of ordinal fixation
number in Experiment 1

The high-saliency distractor was fixated earlier than the second most salient
object (see Fig. 4) in this experiment. The two objects also influenced each
other’s fixation. The inspection of the distractors was influenced by the proximity
of the targets, and the inspection of the targets was influenced by the presence
or absence of distractors.

3 Experiment 2: Inspecting for Search

Whereas in Experiment 1 the participants looked at the pictures in order to
remember the scene, in this study the same pictures were used for a search task.
Each time a picture was shown, the participants were required to judge whether
or not a piece of fruit was present. The task now requires the viewers to look
for a particular object, in the presence of a distractor that had higher visual
saliency.

3.1 Method

The same pictures as were used in Experiment 1 were again used here, with
21 additional pictures that contained a high-saliency distractor, but no target
object. The same equipment was used with 20 undergraduates. No participant
had taken part in Experiment 1, all were paid volunteers, and all had normal or
corrected-to-normal vision. The procedure was otherwise similar to Experiment
1, except that the instructions were to search for a piece of fruit in the picture,
and to indicate its presence or absence by pressing one of two keyboard keys.
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3.2 Results

Trials were analysed only where a target had been present in the picture. Distrac-
tors were fixated on only 20.4% of trials in Experiment 2 (in contrast with 84.8%
in Experiment 1), and so no analysis was possible. The number of fixations prior
to inspection of the target was again analysed as a function of the positions of the
target and distractor, and the means are shown in Fig. 5. An analysis of variance
indicated a reliable effect of target position (F = 22.08, df = 1, 19, p < .001),
with fewer fixation being required for inspection of targets appearing 3 deg from
the initial fixation. There was also an effect of distractors on the number of fix-
ations made prior to target inspection (F = 15.07, df = 2, 38, p < .001), paired
comparisons indicated that when the distractor was located at 3 deg from centre
then it was more disruptive than when it was placed at 6 deg or when it was
absent altogether.

Fig. 5. Number of fixations made prior to inspection of the low-saliency target object
(a piece of fruit) in Experiment 2

The cumulative probability of fixation of objects is shown in Fig. 6, for all
targets and all distractors. The earlier fixation of the targets is in marked contrast
with the target/distractor comparison from Experiment 1 (see Fig. 4). Targets
are now fixated with the first fixation on 60.2% of trials and by the second
fixation on 81.8% of trials. In Experiment 1 the targets had been fixated on only
47.1% of trials by the second fixation. In contrast the distractor was fixated on
18.2% of trials, whereas in Experiment 1 it was inspected 41% of the time with
the first fixation.
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Fixation number (following central fixation)
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Fig. 6. Probability of target and distractor fixation as a function of ordinal fixation
number in Experiment 2

4 Discussion

There are a number of striking contrasts in the results from the two experiments.
When set the task of encoding a picture in preparation for a recognition memory
test, viewers were strongly influenced by the visual saliency of the objects shown.
Their eyes were attracted to objects that had colour, intensity and orientation
features that distinguished them from their backgrounds. Viewers looked at the
most salient region of a picture sooner than the second most salient region, and
this relationship between the order of fixation and the saliency value confirms a
result reported by Parkhurst et al. [2] in a task in which viewers were instructed
simply to look around the picture. When the viewers in Experiment 2 were in-
structed to search for an example of a piece of fruit, and to indicate whether
such a target item was present or not, then visual saliency was much less po-
tent. The highly salient distractors that had attracted fixations in Experiment
1 were now only occasionally inspected at all. Viewers tended to look at the
less-salient fruit without looking at the distractors, suggesting that the saliency
values of the objects were being ignored during the search for the target. Top-
down cognitive demands can override bottom-up visual saliency, and when the
task is well-specified attention can be guided around the scene independently of
the saliency map.

The dominance of visual saliency in the memory task was seen in mutual
influences between the two objects of interest. The distractor was fixated sooner
when the target was further away, and the target was inspected sooner when
there was no distractor present. A distant distractor had as much interference as
a near distractor, relative to there being no other salient object in the picture. In
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the search experiment this pattern was moderated. Targets were still inspected
sooner when they were nearer to the initial point of fixation when the display
started, and near distractors caused more interference than absent distractors,
but distant distractors caused no more interference than absent distractors. Dis-
tant distractors could be ignored in this search task, whereas distant distractors
in the memory task caused similar amounts of interference as near distractors.

The results are consistent with the predictions of the saliency map hypothesis
for free viewing conditions [1],[2]. When searching for an object defined in terms
of its category membership, however, visual saliency did not predict the locations
of the first few fixations. Indeed, the most salient object, a non-target, was sel-
dom fixated. The saliency map was not influential, if indeed it was constructed
at all during the search task. If its construction is obligatory, then cognitive
demands can exclude or minimise its input to the saccadic programming mech-
anism. Viewers guided their searches to locations where targets were likely to
be placed, and to objects possessing features shared with members of the search
category. Henderson, Weeks and Hollingworth [8] suggest that the saliency map
is built with low-level visual features that guide the first few fixations. As the
scene is inspected and the content understood, cognitive guidance can take over
and the semantic content of the picture determines our inspection pattern. The
present data suggest instead that the content of a picture can be understood
without these preliminary fixations, and that cognitive guidance can be used to
program the first saccadic movement.
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Abstract. Visual attention is the ability of a vision system, be it bio-
logical or artificial, to rapidly detect potentially relevant parts of a visual
scene. The saliency-based model of visual attention is widely used to sim-
ulate this visual mechanism on computers. Though biologically inspired,
this model has been only partially assessed in comparison with human
behavior. The research described in this paper aims at assessing its per-
formance in the case of natural scenes, i.e. real 3D color scenes. The
evaluation is based on the comparison of computer saliency maps with
human visual attention derived from fixation patterns while subjects are
looking at the scenes. The paper presents a number of experiments in-
volving natural scenes and computer models differing by their capacity
to deal with color and depth. The results point on the large range of
scene specific performance variations and provide typical quantitative
performance values for models of different complexity.

1 Introduction

Visual attention is the ability of a system, be it biological or artificial, to analyze
a visual scene and rapidly detect potentially relevant parts on which higher level
vision tasks, such as object recognition, can focus. On one hand, artificial visual
attention exists as the implementation of a model on the computer. On the
other hand, biological visual attention can be read from human eye movements.
Therefore, the research presented in this paper aims at assessing the performance
of various models of visual attention by comparing the human and computer
behaviors.

It is generally agreed nowadays that under normal circumstances human eye
movements are tightly coupled to visual attention. This can be partially ex-
plained by the anatomical structure of the human retina. Thanks to the avail-
ability of sophisticated eye tracking technologies, several recent works have con-
firmed this link between visual attention and eye movements [1, 2, 3]. Thus, eye
movement recording is a suitable means for studying the temporal and spatial
deployment of visual attention in most situations.

J. Mira and J.R. Álvarez (Eds.): IWINAC 2005, LNCS 3562, pp. 469–478, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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In artificial vision, the paradigm of visual attention has been widely inves-
tigated during the last two decades, and numerous computational models of
visual attention have been suggested. A review on existing computational mod-
els of visual attention is available in [4]. The saliency-based model proposed in
[5] is now widely used in numerous software and hardware implementations [6, 7]
and applied in various fields.

However, and despite the fact that it is inspired by psychophysical studies,
only few works have addressed the biological plausibility of the saliency-based
model [8]. Parkhurst et al [9] presented for the first time a quantitative compar-
ison between the computational model and human visual attention. Using eye
movement recording techniques to measure human visual attention, the authors
report a relatively high correlation between human attention and the saliency
map, especially when the images are presented for a relatively short time of few
seconds. Jost et al [10] run similar experiments on a much larger number of test
persons and could measure the quantitative improvement of the model when
chromaticity channels are added to the conventional monochrome video chan-
nels. Visual attention in 3D scenes was first considered in [11] and recently, a
visual attention model for 3D was quantitatively analyzed in presence of various
synthetic and natural scenes [12].

This paper presents a more global analysis, where the performance of a family
of visual attention models in presence of 3D color scenes is evaluated. The basic
motivation is to get insight into the contribution of the various channels like
color and depth. Another motivation is to assess possible improvements when
artificial visual attention is made more complex.

The remainder of this paper is organized as follows. Chapter 2 recalls basics
of the saliency models. Chapter 3 presents the methods for acquiring the human
fixation patterns and comparing them to the saliency map. Chapter 4 details the
experiments and obtained results. A general conclusion follows in Chapter 5.

2 Saliency Models

The saliency-based visual attention [5] operates on the input image and starts
with extracting a number of features from the scene, such as intensity, orientation
chromaticity, and range. Each of the extracted features gives rise to a conspicuity
map which highlights conspicuous parts of the image according to this specific
feature. The conspicuity maps are then combined into a final map of attention
named saliency map, which topographically encodes stimulus saliency at every
location of the scene. Note that the model is purely data-driven and does not
require any a priori knowledge of the scene.

2.1 Feature and Conspicuity Maps

From a scene defined by a color image (R,G,B) and a range image Z, a number
of features Fj are extracted as follows:
Intensity feature F1 = I = 0.3 · R + 0.59 · G + 0.11 · B.
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Four features F2, F3, F4, F5 for the local orientation according to the angles
θ ∈ {0o, 45o, 90o, 135o}.
Two chromaticity features F6, F7 based on the two color opponency components
R+G− and B+Y − defined with the help of the yellow component Y as follows:

Y =
R + G

2
F6 =

R − G

I
F7 =

B − Y

I
(1)

Depth feature represented by a depth map F8 = Z.
Each feature map is then transformed into its conspicuity map Cj which

highlights the parts of the scene that strongly differ, according to the feature
specificity, from their surroundings. The computation of the conspicuity maps
noted Cj = T (Fj) relies on the center-surround mechanism, a multiscale ap-
proach and a normalization and summation step during which, the maps from
each scale are combined, in a competitive way, into the feature-related conspicu-
ity map Cj .

2.2 Cue Maps

Given the nature of the different features, the model groups together conspicuities
belonging to the same category and we define cue conspicuity maps for intensity
(int), orientation (orient), chromaticity (chrom.) and range as follows:

Ĉint = C1; Ĉorient =
∑

j∈{2,3,4,5}
N(Cj); Ĉchrom =

∑
j∈{6,7}

N(Cj); Ĉrange = C8

(2)
where N(.) is a normalization operator which simulates the competition between
the different channels. A detailed description of the normalization strategy is
given in [6].

2.3 Saliency Map

Finally, the cue maps are integrated, in a competitive manner, into a universal
saliency map S as follows:

S =
∑
cue

N(Ĉcue) (3)

More specifically, in this study we work with three alternative saliency maps
of in-creasing complexity, namely:

– A greyscale saliency map Sgrey that includes intensity and orientation:
Sgrey = N(Ĉint) + N(Ĉorient).

– A color saliency map Scolor that includes intensity, orientation and chro-
maticity: Scolor = N(Ĉint) + N(Ĉorient) + N(Ĉchrom).

– A depth saliency map Sdepth that includes intensity, orientation, chromaticity
and range: Sdepth = N(Ĉint) + N(Ĉorient) + N(Ĉchrom) + N(Ĉrange).
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3 Comparing Computer and Human Visual Attention

The evaluation principle illustrated in figure 1 is based on the comparison of
the computed saliency map with human visual attention. Under the assumption
that under most circumstances, human visual attention and eye movements are
tightly coupled, the deployment of visual attention is experimentally derived
from the spatial pattern of fixations.

Fig. 1. Comparison of computer and human visual attention

3.1 Eye Movement and Fixation Pattern Recording

Eye movements were recorded with an infrared video-based tracking system
(Eye-LinkTM ). It has a temporal resolution of 250 Hz, a spatial resolution of
0.01o, and a gaze-position accuracy relative to the stimulus position of 0.5o −
1.0o, largely dependent on subjects’ fixation accuracy during calibration. As the
system incorporates a head movement compensation, a chin rest was sufficient
to reduce head movements and ensure constant viewing distance.

A considerable challenge of this research has been to record eye movements
while a subject is watching a stereo image. It was made possible with the use of
an autostereoscopic display. It avoids using glasses on the subject, which would
prevent eye movement tracking. The images were presented in blocks of 10. Each
image block was preceded by a 3 × 3 point grid calibration scheme. The images
were presented in a dimly lit room on the autostereoscopic 18.1” CRT display
(DTI 2018XLQ) with a resolution (in stereo mode) of 640 × 1024, 24 bit color
depth, and a refresh rate of 85 Hz. Active screen size was 36 × 28.5 cm and
viewing distance 75 cm, resulting in a viewing angle of 29 × 22o. Every image
was shown for 5 seconds, preceded by a center fixation display of 1.5 seconds.
Image viewing was embedded in a recognition task.

Eye monitoring was conducted on-line throughout the blocks. The eye track-
ing data was parsed for fixations and saccades in real time, using parsing pa-
rameters proven to be useful for cognitive research thanks to the reduction of
detected microsaccades and short fixations (< 100 ms). Remaining saccades with
amplitudes less than 20 pixels (0.75o visual angle) as well as fixations shorter
than 120 ms were discarded after-wards [10].
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For every image and each subject i, the measurements yielded an eye trajec-
tory T i composed of the coordinates of the successive fixations fk, expressed as
image coordinates (xk, yk):

T i = (f i
1, f

i
2, f

i
3, ...) (4)

3.2 Score s

The score s is used as a metric to compare human fixations and computer saliency
maps. Also called chance-adjusted saliency by Parkhurst et al. [9], the score s
corresponds to the difference of average values of two sets of samples from the
computer saliency map S(x). Formally:

s =
1
N

∑
fk∈T

S(fk) − µS (5)

The first term corresponds to the average value of N fixations fk from an eye
trajectory T i . The second term µS is the saliency map average value. Thus the
score measures the excess of salience found at the fixation points with respect to
arbitrary points. If the human fixations are focused on the more salient points in
the saliency map, which we expect, the score should be positive. Furthermore,
the better the model, the higher the probability to reach the points with highest
saliency and the higher this score should be.

4 Experiments and Results

The experimental process was divided into two parts. A first part is devoted
to the measurement of visual attention induced by 2D images. A second part
compares human visual attention in presence of 3D color scenes.

4.1 Dataset 2D

This dataset consists of 41 color images containing a mix of natural scenes, frac-
tals, and abstract art images (see figure 2). Most of the images (36) were shown
to 20 subjects. As stated above, these images were presented to the subjects for
5 seconds apiece, resulting in an average of 290 fixations per image.

4.2 Dataset 3D

This dataset consists of 12 3D scenes representing quite general natural scenes.
Each scene is represented by a stereo image pair. Figure 3 presents sample images
from this dataset. These image pairs were presented to 20 different subjects for
5 seconds apiece, resulting in an average of 290 fixations per image.
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Fig. 2. Images from the dataset 2D, ranked by score for the color model

Fig. 3. Sample scenes from the dataset 3D

4.3 Performance in Presence of 2D Images

For all images of dataset 2D, we created a greyscale saliency map Sgrey and a
color saliency map Scolor, both normalized to the same dynamic range. Then, a
comparison of these two models with the whole set of human fixation patterns
was performed in order to obtain the respective scores. Note that the score s
was computed taking the first 5 fixations of each subject into account, since it
has been suggested that, with regard to human observers, initial fixations are
controlled mainly in a bottom-up manner [10].

Figure 4 shows the scores for the different individual images. The main obser-
vation here is that the resulting scores are widely spread in their value, covering
the range [-7 .. 115]. The values show the model performance depends in a strong
way on the kind of image. To illustrate these results and explain somehow these
strong variations, we refer to figure 2 showing sample images from the dataset
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Fig. 4. Individual scores for images of dataset 2D, both for the greyscale and color
models

2D. There, the images are ordered according to the score Scolor obtained by each
image. The image yielding the best results is top left. The score decreases from
left to right and top to bottom. It is apparent that the images found on the
top row generally contain few and strong salient features, such as the fish, the
small house or the water lily. They yield the best results. On the other hand,
images that lack highly salient features, such as the abstract art or the fractal
images on the bottom row, result in much lower scores. Here, the model loses its
effectiveness in the single image (out of 41) yielding a negative score.

Referring to performance of the models, it is expected that the color model
performs better because it includes the additional chromaticity cue. We therefore
expect the score for the color model to be at least as good as the score of the
greyscale model. Although this is not true for all images it is the case for a
majority of about 85% of the cases.

A general comparison is given in table 1 showing the estimated average model
scores. The standard error was computed using the variance from both random
picks and human fixations means. The main observation is that the color model
fares better than the greyscale one. More specifically, the color model yields
an average score 25.8% higher than the greyscale model. This underlines the

Table 1. Scores of the greyscale and color models

score s

greyscale model Sgrey 24.8 ± 1.2

color model Scolor 31.2 ± 1.1
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usefulness of the chromaticity cue in the model and goes toward assessing that
this cue has a considerable influence on visual attention.

4.4 Performance in Presence of 3D Scenes

For all scenes of dataset 3D, we created a color saliency map Scolor and a depth
saliency map Sdepth , both normalized to the same dynamic range. Then, a
comparison of these two models with the whole set of human fixation patterns
was performed in order to obtain the respective scores. The score s was computed
as in previous experiments.

Figure 5 shows the scores for the 12 individual images. The main observation
here is that the resulting scores are widely spread in their value [5 .. 76]. The
effect is the same as in previous experiments and above comments keep their full
validity here. It shows again that the model performance depends in a strong
way on the kind of scene.

Referring to the model performance, table 2 presents the average scores s over
the whole dataset, for both the color and the depth models. The standard error
was computed as above. The main observation is that the depth model fares
better than the color one. More specifically, the depth model yields an average
score s that is 11.8% better than the color model. This general result underlines
the usefulness of the depth channel in the model and goes toward assessing that
depth contributes to the visual attention process.

Fig. 5. Individual scores for images of dataset 3D, both for the color and depth models

Table 2. Scores of the color and depth models

score s

color model Scolor 36.2 ± 2.1

depth model Sdepth 40.5 ± 2.1
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5 Conclusion

The research described in this paper aims at assessing the performance of the
saliency model of visual attention in the case of natural scenes. The evaluation
is based on the comparison of computer saliency maps with human visual atten-
tion derived from fixation patterns while subjects are looking at the scenes of
interest.

A new aspect of this research is the application to 3D color scenes. In this re-
spect, this study provides for the first time quantitative performance comparisons
of different models of visual attention, giving new insights to the contribution of
some of its components, namely color and depth.

The experiments involved test persons watching at 3D scenes generated by
stereo-vision. An autostereoscopic display was used so that stereo image pairs
could be shown to the subjects while recording their eye movements. A first
series of experiments refers to the performance in presence of color images. It
involves 40 images of different kinds and nature. A second series refers to the
performance in presence of color 3D scenes. It involves 12 scenes of different
kinds and nature. The number of test persons is 20 in each case.

The eye saccade patterns were then compared to the saliency map generated
by the computer. The comparison provides a score (s), i.e. a scalar that measures
the similarity of the responses. The higher the score, the better the similarity
and the better the performance of the attention model for predicting human
attention.

The experiments provide scores covering a wide range of values, i.e. the range
is [-5 .. 120] for the images and [5...75] for the 3D scenes. These large score
variations illustrate the strong dependence on the kind of scenes: Visual attention
of some scenes is very well predicted by the model, while the prediction is quite
poor in some cases. These results confirm previous understanding of the model
capability and earlier measurements on smaller datasets.

Beyond these large variations, the study shows significant performance differ-
ences between the three investigated models. The model performance increases
with the model complexity. The performance is first increased when passing from
the basic greyscale model to the color model. This is quantitatively assessed by
a score increase of 25%. A further performance increase, assessed by a score
increase of 11%, characterizes the model extension to depth.

The study therefore confirms the feasibility of a quantitative approach to
performance evaluation and provides a first quantitative evaluation of specific
models differing by their capacity to deal with color and depth.
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Abstract. Motion is a key, basic descriptor of our visual experience of
the outside world. The lack of motion perception is a devastating ill-
ness that leads to death in animals and seriously impaired behavior in
humans. Thus, the study of biological basis of motion detection and anal-
ysis and the modelling and artificial implementation of those mechanisms
has been a fruitful path of science in the last 60 years. Along this pa-
per, the authors make a review of the main models of motion perception
that have emerged since the decade of the 60’s stress-ing the underly-
ing biological concepts that have inspired most of them and the tradi-
tional architectural concepts imprinted in their functionality and design:
formal mathematical analysis, strict geometric patterns of neuron-like
processors, selectivity of stimulate etc. Traditional approaches are, then,
questioned to include ”messy” characteristics of real biological systems
such as random distribution of neuron-like processors, non homogeneity
of neural architecture, sudden failure of processing units and, in general,
non deterministic behavior of the system. As a result is interesting to
show that reliability of motion analysis, computational cost and extrac-
tion of pure geometrical visual descriptors (size and position of moving
objects) besides motion are improved in an implemented model.

1 Motion as an Essential Visual Descriptor

Detection and analysis of movement parameters of objects in motion is one of
the main tasks of biological visual systems. Initially not seen as a basic sense
(as explained in [1]) motion detection is now considered a fundamental visual
dimension and a considerable amount of information has been accumulated in
the last 50 years on how biological systems (from insects to vertebrates) cope
with the problems of extracting and coding vital information on moving targets.
Historically, there has been a classification of seven functional benefits of image
motion processing for living systems, namely: (1) encoding of the third dimen-
sion, (2) an estimation of time to collision, (3) image segmentation, (4) motion
as a proprioceptive sense, (5) motion as a stimulus to drive eye movements, (6)
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motion as required for pattern vision and (7) the perception of real moving ob-
jects. Thus, biological image motion processing might have a large number of
rather different roles to play in vision, at least in higher vertebrates, and can be
seen as a source for inspiration when designing artificial visual systems which
include motion analysis tasks.

In the last years there has been a huge development not only in our knowl-
edge about the biologic bases of vision but in the formulation of computational
theories evolving principles of its functioning and make them applicable in non
natural con-texts, in human creations, with two goals in mind, understanding the
biological systems and building efficient artificial systems. The interconnection
between the two disciplines, Biology and Computer Science, has been decisive:
using computational patterns has given rise to new ways of understanding Biol-
ogy as the same time as new computational patterns have emerged as the result
of imitating biological systems and its structures [2]. However this task can be
complicated as lot of difficulties arise in understanding how Nature works in
most of the cases in such an optimal way.

One of the questions brought out about the perception of motion has to do
with the process/mechanism that gives raise to this perception. Is the simply
the displacement of a visual image within time?. This implies that identifying
specific characteristics in a scene is a prerequisite for the detection of motion.
However, although the identification of certain circumstances in the image can
have an effect in the perception of motion, it is not necessary as it has been
proved in some experiments carried out with different species using periodic and
statistic patterns with no prominent characteristics [3].

Is a basic visual dimension as it happens with the perception of color or the
stereoscopic vision so that there are basic sensorial processes that extract infor-
mation about motion or on the contrary is a dimension derived from primitive
sensorial processes?

Although the perception of color has always been considered as a fundamen-
tal dimension, an ”immediate” experience with associated basic sensorial pro-
cesses that extract information about that perception (there are photoreceptors,
specifically the cones, sensitive to color, with three types of cones characterized
by having a type of photopigment sensitive to different wavelengths), it is not
the same when we talk about the perception of motion: there have been always
doubts whether to consider it as a fundamental perception that represents a
basic cognitive process or as a characteristic that is reconstructed within our
visual system in upper levels [1].

In the 1950’s the discovery of techniques that allow to register the activity of
individual cells contributed to more evidences. Several experiments found nerve
cells sensitive to moving images: records were obtained where the frequency of
response of certain cells varied with the modification whether the orientation of
the stimulus or its speed, regardless of other parameters like contrast, shape or
size [4].

Therefore, motion is a fundamental property of the biologic visual systems
that can be isolated from other subsystems using different experimental tech-



On the Evolution of Formal Models and Artificial Neural Architectures 481

niques. The different functions in which it is involved make us think that there
are different systems for processing motion that operates in parallel. Each one
could carry out different functions and, even more, it is possible that a particular
functional application can be carried out by more than one subsystem.

In addition of that, the subsystem of motion plays an important role in the
attention and orientation system. However, this influence seems to be reciprocal
as some experiments carried out basically with primates show an important effect
of the attention in the process of visual information about motion [5]. Taking
this studies as the reference point, the authors have proposed a model which
reflects the interconnection of both subsystems [6], [7].

2 Essentials of Formal Traditional Motion Detection
Models

There are a huge number of theories regarding motion and different types of
algorithms that allow to extract characteristics as the orientation and the speed
of motion. Under a theoretical point of view, a local mechanism for motion
detection must satisfy certain minimum requisites to be able to detect motion
in a certain orientation.

Some models characterize in formal terms the processes involved in the de-
tection of motion whereas others deal with the problem under the point of view
of the cellular mechanisms that allow that type of processes. Independently of
the level of description, the different biological schemes of motion detection can
be classified in two main categories: the gradient models and the correlation-
type models. Whereas in the gradient models an estimate of the local motion is
carried out related with the changes in space and time measured simultaneously
in the local intensity of the light of the image, in the schemes of correlation it
is carried out evaluating some king of spatio-temporal correlation of a filtered
signals of two points of the image present at the retina.

The gradient models emerged from the studies of computer vision whereas the
correlation-type detectors of motion were deducted from experimental studies of
the observed behavior in the motion detection system of insects.

The gradient models, at least in its mathematical formulation, obtain a mea-
sure of the local speed dividing the temporal gradient dI/dt by the space gradi-
ent dI/dx of the pattern (x and t are referred to the variables space and time
respectively; I makes reference to the intensity of the light), that is

Vx = − dI/dt

dI/dx

The basic operations of a correlation-type detector are summarized in the
figure 1. In its most simple form it operates directly over the intensity distribu-
tion present on the retina and executes a multiplication (non-lineal operation)
as interaction between the two input channels. These channels are separated a
certain distance Dj, called ”sample base”. This distance determines the spatial
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Fig. 1. Motion detection process by a correlation-type detector

resolution of the system and its dependence of the components of the spatial
frequency of the stimulus. If this distance is excessively small, the spatial ”alias-
ing” effect can be produced and would confuse the system and if it is too big
would produce a loss of sharpness of vision. When the signal in one of the input
channels, being activated at first by a moving stimulus, delays a certain time
interval, e, the signals in both channels tend to match up in the point M, where
both signs are multiplied with the result of a greater amplitude answer (Fig. 1A).
Consequently, when the temporal sequence of stimulation is inverted (motion in
opposite direction) the temporal displacement between both signals is increased
by the delay introduced, e, giving small answers as a result (Fig. 1B). Obviously,
the delay introduced and the distance between the two detectors determine the
optimal speed of the detector and, consequently, its dynamic range. The combi-
nation of the temporal delay and the multiplication between the input channels
of the detector is the reason why this type of detectors measure the degree of
coincidence of the input signals or, in other words, execute a space-time type
correlation.

However, a motion detector like the one shown in figure 1A and B also pro-
duces outputs that not only correspond with the result of a motion of the stim-
ulus but are induced by input signals with a high degree of correlation like the
variation of the illumination of the environment. To eliminate this phenomenon,
a third correlation-type motion detector is shown in figure 1C. This detector is
made out of two opposite symmetric units each one with a delay unit and a layer
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Fig. 2. Summary of the main motion analysis models proposed since the 1960’s

where both signs are multiplied. The outputs of both units are subtracted in a
third level so that the answer to motion in opposite direction generates a sign
with the same amplitude but opposite signs. However, this is only true if the
motion detector is mathematically perfect, supposition that is not completely
real given the known properties of the neuronal ”hardware”. There-fore, a bio-
logical motion detector can be not strictly selective to motion, but it is expected
to respond, at least to a certain degree, to the temporal modulation of the light
of a stationary stimulus.

So far we have spoken about two clearly differentiated schemes: the gradient
models and the correlation-type models. However, we can see the motion in a
visual image as a spatio-temporal event that can be represented mathematically
as a Luminance Function L(x, y, t) that depends on two variables: space (x,y)
and time (t). Similarly, this function can be expressed in the frequency domain
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were L(Fx, Fy, F t) is the Fourier transform of L(x, y, t). Since the first processes
of visual information codify simultaneously and in an efficient way the spatial
and temporal frequency it is interesting to think in terms of space-temporal
frequency. Some studies in the 80’s allowed, using this approximation, to extract
some characteristics of the stimulus used in the experiments. So, for instance,
the results of some experiments in which an ”apparent” motion of the stimulus is
detected, although it doesn’t really exist, were explained using a representation
in the frequency domain (Fourier).

Figure 2 shows a summary of the main models proposed since the 1960’s,
period in which the first explicit models about motion analysis are dated.

2.1 Local Motion Detectors and Consequences of the Spatial
Integration

Correlation-type individual motion detectors don’t give an exact estimation of
the lo-cal speed of the pattern. Its response to motion of any pattern, even
with constant speed, it is not constant, it is modulated with the passing of
time depending on the speed and texture of the pattern. Because of the output
signals of a matrix of motion detectors would be out of phase, probably the most
simple way of enduring these modulations would consist in carrying out some
type of temporal or spatial integration over a sufficiently big group of motion
detectors. It is especially interesting the fact that the spatial integration is a
quite common mechanism in cells related with motion information processes not
only in vertebrates but in invertebrates.

In humans, it is clear the importance of the spatial integration in the percep-
tion of motion in several psychophysics studies. Let’s illustrate with two examples
the responses of individual detectors of motion and the consequences of spatial
integration (Fig. 3).

On the visual cortex of the cats, the responses of simple cells sensitive to
motion and its directional selectivity to motion of periodic pattern are modu-
lated in the time (Fig. 3C). On the other hand, complex cells combining the
outputs of simple cells with antagonistic subfields [8] provide non-modulated re-
sponses (Fig. 3D). This match not only the predictions for the responses of local
motion detectors but the pre-dictions for the responses of spatiality integrated
detectors.

In the visual system of the insects, it has also been possible to investigate
the responses of individual detectors of motion and the consequences of spatial
integration within the same neuron. So, using anatomical and operational crite-
ria, it has been possible to register the response of a fly cell sensitive to motion
and directional selectivity called ”HS cell”. Since this cells receive inputs from
a great matrix of local detectors of motion it is possible to obtain easily the
responses of a detector of motion with temporal integration. On the other hand,
it is possible to obtain the response of local detectors if we avoid the temporal
integration showing the stimulus to the animal through a small slot. The results
are shown in Fig. 3A and B respectively. In this way it was demonstrated, as it
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Fig. 3. Local response with spatial integration of two biological motion detectors: the
HS cell of the fly and the simple cell in cat

can be predicted from the correlation-type models and ac-cording to the results
obtained from the cortical cells of the cat, that the responses of the individual
detectors was modulated in time (Fig. 3A) whereas this temporal modulation
disappeared as a consequence of the spatial integration (Fig. 3B).

Having reached this stage, it is advisable to notice that the temporal mod-
ulations of the responses of the local detectors cannot be predicted using the
gradient models, at least in its pure mathematic form.

With this results it is possible to characterize the non-lineal interaction that
lies be-hind the detection of motion. If the non-linearity in the motion detection
system is a second order one, for instance a multiplication, and no non-lineal
process takes place over the visual inputs before and after the detection of mo-
tion, the response to the motion of a grille pattern with luminosity following a
sinusoid function and at constant speed should contain only the fundamental
harmonic and the second harmonic of the temporal frequency of the stimulus
and this match the results shown above (Fig. 3A and C).

Unlike the gradient models which represent a pure speed sensor, a correlation-
type mechanism of detection of motion does not point out correctly the local
motion in the image on the retina in terms of its direction and speed. Also,
its outputs depend as well on the structure of the stimulus, for instance on the
content of the spatial frequency and the contrast.

The available most relevant biologic experimental data match the predictions
carried out from the correlation-type detectors of motion. However, some psy-
chophysics studies carried out in human beings are interpreted from the gradient
scheme.
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3 A Different Approach: Randomness,
Non Homogeneous Architectural Parameters and
Multichannel Processing Are Key Tools for Improving
Motion Detection Performance

Formal mathematical tools, as seen in previous text, are a powerful way to
describe the microstructural behavior of processes that underly in motion de-
tection and analysis. However are of a limited use when trying to implement in
a parallel fashion a computational counterpart of a described biological system.
In what follows, some results are reviewed from previous material by the au-
thors in which messy concepts like randomness, varying spatial characteristics
of neuron-like processors and varying number of neurons are combined to yield
a new perspective on the building of visual models. A working vision system for
estimating size, location and motion of an object by using a set of randomly
distributed receptive fields on a retina has been proposed by the authors [7], [9].
The used approach differs from more conventional ones in which the receptive
fields are arranged in a geometric pattern. From the input level, computations
are performed in parallel in two different channels: one for purely spatial prop-
erties, the other for time-space analysis, and are then used at a subsequent level
to yield estimates of the size and center of gravity (CG) of an object and the
speed and direction of motion (Fig. 4 and 5). Motion analysis refining is im-
plemented by a lateral interaction (spatial) and memory (temporal) schemes in
which direction and speed are used to build a trajectory. The different param-
eters involved (receptive field RF size, memory weighting function, number of
cells) are tested for different speeds and the results compared, yielding new in-
sights on the functioning of the living retina and suggesting ideas for improving
the artificial system. A tetra-processor UltraSparc SUN computer was used for
simulation and video-outputs in false color show the two-channel activity of the
system. A train of input images presenting a moving target was analyzed by the
neuron-like processing layers and the results presented as a video movie showing
a color coded version of neural activity.

The random distribution of receptive fields obviates the necessity of having a
deterministically organized system and it seems that the natural system which
has inspired the model does not use a perfectly established network either. Also,
taking the number of total cells as a variable parameter is a way of checking the
reliability of the system against random loss of computational units.

Seen as a whole, and comparing the location of the CG of the object calcu-
lated separately by both channels the results give us some perspective on the
usefulness of channel processing in artificial visual systems which could also be
of interest in trying to think of a rationale for the same kind of computations
in natural perceptual systems. Though an estimate of the position of the object
can be calculated from the velocity channel, it is not as good nor as fast in its
delivery as it is when presented by the purely spatial CG-size channel, and is
greatly dependent on the number of receptive fields that are used. The system
could work properly for all descriptors (CG, size, position, speed), in certain
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Fig. 4. Representation of a biological based visual motion analysis system
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Fig. 5. Specific processing scheme applied to an image reaching our artificial retina

cases, with only the output from the velocity channel, but if precision is needed,
then a second channel must be included. In either case, speed and direction of
motion can be finely estimated.

From the data obtained in the tests varying the total number of receptive
fields one conclusion is the following: a reliable system for computing speed and
trajectory of a moving object can be built whose computational complexity and
cost (in terms of number of processors, distribution and size of receptive fields)
can be controlled to fall within certain desirable ranges. The built-in parallelism
of the system allows us to play with those parameters avoiding the increase of the
percent error in estimated speed. Thus loss of processors (loss of receptive fields)
need not dramatically affect the performance of one subsystem (such as the
movement detection and analysis system) provided there is a minimum overlap
and the RF sizes are big enough to cope with a range of speeds. A possible
extension on which we are currently working, is a system containing several
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subchannels (for, e.g., effectively computing different speeds or different other
descriptors) which might be more reliable and less costly (both in complexity
and computational operations) than a single do-it-all channel, even when the
number of processors of this last channel could be less than the total sum of
them in the former scheme.
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Abstract. Fuel moisture content (FMC) is one of the variables that
drive fire danger. Artificial Neural Networks (ANN) were tested to esti-
mate FMC by calculating the two variables implicated, equivalent water
thickness (EWT) and dry matter content (DM). DM was estimated for
fresh and dry samples, since water masks the DM absorption features
on fresh samples. We used the ”Leaf Optical Properties Experiment”
(LOPEX) database. 60% of the samples were used for the learning pro-
cess in the network and the remaining ones for validation. EWT and DM
on dry samples estimations were as good as other methods tested on the
same dataset, such as inversion of radiative transfer models. DM estima-
tions on fresh samples using ANN (r2 = 0.86) improved significantly the
results using inversion of radiative transfer models (r2 = 0.38).

1 Introduction

Fuel moisture content (FMC) can be defined as the amount of water per unit
dry matter. This variable conditions fire, since the drier the vegetation the easier
fires ignite and propagate [1].

FMC is traditionally measured directly through field sampling. This method
requires a lot of labour. The use of remote sensing to measure spectral prop-
erties of leaves can provide an indirect FMC estimation in order to obtain a
comprehensive spatial and temporal distribution. Water stress causes changes
in the spectral reflectance and transmittance of leaves [18]. Radiative transfer
models show that these spectral measurements are related to equivalent water
thickness (EWT), water content per area unit, and dry matter content (DM),
matter content per area unit [2], [7] and [12]. FMC is a quotient of these two
variables, EWT and DM, that can be estimated independently [16].

Different remote sensing instruments have been used to predict these kind
of biochemical variables at different scales measuring their spectral properties.
Spectrophotometers that can predict the properties of individual leaves (Fig-
ure 1) [2] and [16]. Field spectroradiometers measure the properties of vegetation
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Fig. 1. Example of a Spectrophotometer. Perkin-Elmer Lambda-19 Spectrophotome-
ter. Spectral range 250-2500 nm with a 1.00 nm slit width (www.grc.nasa.gov/WWW/
epbranch/OpticalProps/lambda.htm)

Fig. 2. Example of a field spectroradiometer. Analytical Spectral Devices FieldSpec
ProFR, spectral range 350-2500 nm with a 3-10 nm slit width. (www.asdi.com/
products specifications-FSP.asp)

canopies taken a single spectrum, averaging whatever is seen in their field of view
(Figure 2) [16]. Hyperspectral airborne sensors that provide spatial information
about the spectral properties of the vegetation (Figure 3) [17] and [19]. Hyper-
spectral and multispectral satellites that provide repeatable spectral properties
of the vegetation at various spatial scales are able to address not only the local
fire risk but the regional or global scale risk (Fig. 4) [4], [5], [6] and [20].

Different methods have been used to extract FMC from the spectral measure-
ments. One possible way to estimate FMC is to apply an empirical fitting using
linear regression based on band ratios [3], [5], [6], [10] and [14]. This approach
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Fig. 3. Example of a hyperspectral airborne sensor. Advanced Visible InfraRed Imaging
Spectrometer (AVIRIS), spectral range between 380 -2500 nm with a 10 nm slit width.
Spatial resolution, 4 or 20 m, depending on flight altitude. (aviris.jpl.nasa.gov)

Fig. 4. Example of a hyperspectral satellite. Moderate resolution Imaging Spectrometer
(MODIS). 36 bands, spectral range between 405 -14385 nm with a slit width about
20 nm, depending on bands. Spatial resolution, 250 to 1000 m, depending on bands.
(www.latuv.uva.es/modisql)

provides a model of known accuracy but needs to be recalibrated in order to be
applied to other study areas.



492 D. Riaño et al.

The inversion of radiative transfer models provide a physical estimation of
EWT and DM [9], [13], [16] and [20]. This technique is commonly based on in-
formation in the entire spectrum instead of band ratios. The physically based
method can be extrapolated to other study areas, applying a different model if
vegetation type changes. On the other hand, it’s use requires intensive compu-
tation time, being difficult to apply to an entire image. DM results are more
difficult to estimate than EWT, since water in live vegetation masks the DM
absorption features [16].

The work presented here explores the estimation of EWT and DM using
Artificial Neural Networks (ANN) and compares the results to the inversion of
the radiative transfer PROSPECT leaf model [12] and [16]. For the ANN the
EWT and DM estimation are not based on the specific absorption features. This
approach has been successfully applied to estimate leaf area index [8] and would
have the advantage that if we train the network with a wide range of vegetation
samples, the method could be applied to an entire image. ANN can be used as
a universal approximator [15]. This means that the ANN can approximate any
function after a sufficient amount of learning. This is a substantial advantage over
traditional statistical prediction models, as the relationship between the data
entry and output is highly non-linear with significant, but complex, interactions
among both of them.

2 Methods

We used the standard LOPEX dataset produced during an experiment conducted
by the Joint Research Center (JRC) of the European Commission (Ispra, Italy)
[11]. They measured reflectance and transmittance with a Perkin-Elmer Lambda-
19 Spectrophotometer and different biochemical constituents, such as EWT and
DM, of a wide variety of species. We selected 49 broad leaf species sampled from
37 different species, collected over an area within 50 km range of the JRC, in
Ispra. Each sample contained 5 fresh and 5 near-dry leaves.

We applied ANN to predict EWT and DM from reflectance and transmittance
measurements of fresh and dry samples. A total of 2101 measurements were
made between 400-2500 nm and linear interpolation was used to select a value
every 5 nm, giving a total of 421 reflectance and transmittance values, having
a total of 842 input variables. Among the myriad of ANN methods, we chose
the feedforward multilayer perceptron trained with the backpropagation learning
algorithm. Three different ANN were built:

1. To estimate EWT on fresh leaves.
2. To estimate DM on fresh leaves.
3. To estimate DM on dry leaves.

The JavaNNS (Java Neural Network Simulator) 1.1 was used for ANN de-
velopment and a specific Java programs for data manipulating. We divide the
samples into two data sets: learning and validation data set. Each sample was
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formed from five leaves, therefore three of them (60 per cent of each sample)
were used for the learning data set and the remaining leaves used as validation.
A sigmoidal activation function was used in all neurons and a learning rate of
0.2. Since the input and output data are presented to the network in raw format,
these required normalizing over the range [0, 1].

There are a few ways to systematically tune the size of the network. In our
work, a method of controlled trial and error was used to optimize the network
size and make up a network structure. The basic idea of this size optimizing
method was to probe different numbers of neurons in the hidden layer with
different initial weights. Each time a network was trained, it was tested with the
validation set. Through extensive experimentation we finally selected the ANN
architecture with a hundred neurons in the hidden layer and one neuron in the
output layer (Figure 5).

Fig. 5. ANN architecture

3 Results

The estimation of EWT and DM for fresh or dry samples using ANN worked
well in all cases (Figure 6 to Figure 11). We compared our results with the
estimation of these variables using inversion of radiative transfer models (IRTM)
[16] (Table 1). EWT was estimated very accurately with both methods while DM
for dry samples was predicted a little bit better by ANN. On the other hand, DM
for fresh samples was only accurately estimated by ANN. IRTM worked poorly
because DM absorption features are masked by water when samples are fresh
[16]. There were complex interactions in the spectra that affect DM that were not
captured by the absorption features in the IRTM (r2 = 0.38) but were captured
markedly well in the ANN (r2 = 0.96, learning; r2 = 0.86, validation). The
learning process included several leaves of the same species, so further research
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Fig. 6. EWT estimation with data used for learning

Fig. 7. EWT estimation with data used for validation

is needed to test if ANN will work when species that were not used in the learning
process are included in the validation.
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Fig. 8. DM estimation with data used for learning for fresh samples

Fig. 9. DM estimation with data used for validation for fresh samples
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Fig. 10. DM estimation with data used for learning for dry samples

Fig. 11. DM estimation with data used for validation for dry samples
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Table 1. Number of samples (n) and correlation (r2) for the estimation of EWT and
DM using IRTM [16] and ANN

n EWT DM (fresh) DM (dry)

IRTM 245 0.94 0.38 0.85
ANN learning 147 0.98 0.96 0.97
ANN validation 98 0.95 0.86 0.93
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Abstract. This paper proposes an evaluation metric for assessing the
performance of a video tracking system. This metric is applied to adjust
the parameters that regulates the video tracking system in order to im-
prove the system perfomance. Thus, the automated optimization method
is based on evolutionary computation techniques. The illustration of the
process is carried out using three very different video sequences in which
the evaluation function assesses trajectories of airplanes, cars or baggage-
trucks in an airport surveillance application.

1 Introduction

The application of video cameras for remote surveillance has increased rapidly in
the industry for security purposes. The installation of many cameras produces a
great problem to human operators because the incompatibility of a high analysis
of received images with the analysis of the whole information provided for the
surveillance video camera net. The solution is the automatic analysis of video
frames to represent in a simplify way the video information to be presented to
the operator. A minimal requirement for automatic video surveillance system is
the capacity to track multiple objects or groups of objects in real conditions [1].

The main point of this research consists in the evaluation of surveillance
results, defining a metric to measure the quality of a proposed configuration [2].
The truth values from real images are extracted and stored in a file [3] and [4].
To do this, the targets are marked and positioned in each frame with different
attributes. Using this metric in an evaluation function, we can apply different
techniques to assess suitable parameters and, then, to optimize them. Evolution
Strategies (ES) are selected for this problem [5][6][7][8] and [9] because they
present high robustness and immunity to local extremes and discontinuities in
fitness function. This paper demonstrates that the proposed evaluation function
correctly guides the ES optimization in this type of problems. The desired results
are reached once an appropriate fitness function has been defined. This allows
an automatic adjustment of tracker performance accordingly to all specifications
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considered. Furthermore, one of the principal points of this study is that the
evaluation and potential optimization are not dependent on the specific type of
tracking system used.

In the next section, the whole surveillance system is presented, where spe-
cific association problems in this application are analyzed. The third section
presents the proposed metric. In section fourth, the system output in several
scenarios is presented, indicating the response for complex situations, with real
image sequences of representative ground operations. Finally, some conclusions
are presented.

2 Surveillance Video System

This section describes the structure of an image-based tracking system.
The system architecture is a coupled tracking system where the detected

objects are processed to initiate and maintain tracks. These tracks represent the
real targets in the scenario and the system estimates their location and cinematic
state. The detected pixels are connected to form image regions referred to as
blobs. The association process assigns one or several blobs to each track, while
not associated blobs are used to initiate tracks [4].

2.1 Detector and Blobs Extraction

The positioning/tracking algorithm is based on the detection of targets by con-
trasting with local background, whose statistics are estimated and updated with
the video sequence. Then, the pixel level detector is able to extract moving fea-
tures from background, comparing the difference with a threshold. To illustrate
the process, figure 2 depicts the different levels of information interchanged, from
the raw images until the tracks.

Fig. 1. Structure of video surveillance system
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Fig. 2. Information levels in the processing chain

Finally, the algorithm for blobs extraction marks with a unique label all de-
tected pixels connected, by means of a clustering and growing regions algorithm
[10]. Then, the rectangles which enclose the resulting blobs are built, and their
centroids and areas are computed. In order to reduce the number of false de-
tections due to noise, a minimum area, MIN-AREA, is required to form blobs.
This parameter is a second data filter which avoids noisy detections from the
processing chain.

2.2 Blobs-to-Track Association

The association problem lies in deciding the most proper grouping of blobs and
assigning it to each track for each frame processed. Due to image irregularities,
shadows, occlusions, etc., a first problem of imperfect image segmentation ap-
pears, resulting in multiple blobs generated for a single target. So, the blobs
must be re-connected before track assignment and updating. However, when
multiple targets move closely, their image regions may overlap. As a result, some
targets may appear occluded by other targets or obstacles, and some blobs can
be shared by different tracks. For the sake of simplicity, first a rectangular box
has been used to represent the target. Around the predicted position, a rectan-
gular box with the estimated target dimensions is defined, (xmin, xmax, ymin,
ymax). Then, an outer gate, computed with a parameter defined as a margin,
MARGIN-GATE, is defined. It represents a permissible area in which to search
more blobs, allowing some freedom to adapt target size and shape. The asso-
ciation algorithm analyses the track-to-blob correspondence. It firsts checks if
the blob and the track rectangular gates are compatible (overlap), and marks as
conflictive those blobs which are compatible with two or more different tracks.
After gating, a grouping algorithm is used to obtain one ”pseudoblob” for each
track. This pseudoblob will be used to update track state. If there is only one
blob associated to the track and the track is not in conflict, the pseudoblob used
to update the local track will be this blob. Otherwise, two cases may occur:

1. A conflict situation arises when there are overlapping regions for several
targets (conflicting tracks). In this case, the system may discard those blobs
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gated by several tracks and extrapolate the affected tracks. However, this
policy may be too much restrictive and might degrade tracking accuracy. As
a result, it has been left open to design by means of a Boolean parameter
named CONFLICT which determines the extrapolation or not of the tracks.

2. When a track is not in conflict, and it has several blobs associated to it, these
will be merged on a pseudoblob whose bounding limits are the outer limits
of all associated blobs. If the group of compatible blobs is too big and not
dense enough, some blobs (those which are further away from the centroid)
are removed from the list until density and size constraints are held. The
group density is compared with a threshold, MINIMUM-DENSITY, and
the pseudo-blob is split back into the original blobs when it is below the
threshold.

2.3 Tracks Filtering, Initiation and Deletion

A recursive filter updates centroid position, rectangle bounds and velocity for
each track from the sequence of assigned values, by means of a decoupled Kalman
filter for each Cartesian coordinate, with a piecewise constant white acceleration
model [11]. The acceleration variance that will be evaluated, usually named as
”plant-noise”, is directly related with tracking accuracy. The predicted rectan-
gular gate, with its search area around, is used for gating. Thus it is important
that the filter is ”locked” to real trajectory. Otherwise tracks would lose its real
blobs and finally drop. So this value must be high enough to allow manoeuvres
and projection changes, but not too much, in order to avoid noise. As a result,
it is left as an open parameter to be tuned, VARIANCE-ACCEL. Finally, track-
ing initialization and management takes blobs which are not associated to any
previous track. It requires that non-gated blobs extracted in successive frames ac-
complish certain properties such as a maximum velocity and similar sizes which
must be higher than a minimum value established by the parameter MINIMUM-
TRACK-AREA. In order to avoid multiple splits of targets, established tracks
preclude the initialization of potential tracks in the surrounding areas, using a
different margin than the one used in the gating search. This value which allows
track initialization is named MARGIN-INITIALIZATION.

3 Evaluation System

The approach used for this work evaluates the detection and tracking system
performance using ground truth to provide independent and objective data that
can be related to the observations extracted and detected from the video se-
quence. In each scenario, the ground truth has been extracted frame by frame,
selecting the targets and storing the next data for each target:

– Number of analyzed frame
– Track identifier
– Value of the minimum x coordinates of the rectangle that surrounds the

target
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– Value of the maximum x coordinates of the rectangle that surrounds the
target

– Value of the minimum y coordinates of the rectangle that surrounds the
target

– Value of the maximum y coordinates of the rectangle that surrounds the
target

These ground truth is compared to the real detections by the evaluation
system. First of all, the result tracks are checked to see if they match with the
ground truth tracks registered in the ground truth table. For example, as we
see in the next pictures (figure 3), the real image shows two aircrafts in the
parallel taxiways while the tracking system displays three targets. Then, the
target which is in the middle of the screen not pass the test and it would be
marked as a mismatched track.

Fig. 3. Example of mismatched track

If the test is passed, the evaluation system computes four parameters per
target which are classified into ’accurary metrics’ and ’continuity metrics’:

Accuracy metrics:

– Overlap-area (OAP): Overlap Area Percentage between the real and the
detected blobs.

– X-error (Ex) and Y-error (Ey): Difference in x and y coordinates between
the centers of the ideal blob and the detected blobs.

Continuity metrics:

– Number of Tracks per target (NT): It is checked if more than one detected
track is matched with the same ideal track. If this happens, the program
keeps the detected track which has a bigger overlapped area value, removes
the other one and marks the frame with a flag that indicates the number of
detected tracks associated to this ideal one.

– Commutation(C): A commutation occurs when the identifier of a track
matched to an ideal track changes. It typically takes place when the track is
lost and recovered later.
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Besides these parameters, an evaluation function has been defined, with the
objective of extracting a number that measures the quality level of the tracking
system. This number is based on the evaluation metrics specified before. Thus,
the resultant number is obtained by means of a weighted sum of different terms
which are computed target by target:

– Mismatch (M): A counter which stores how many times the ground truth
and the tracked object data do not match up (NT is not 1). Furthermore,
this counter is normalized by the difference between the last and first frame
in which the ideal track disappears and appears (Time of life (T)).

– The three next terms are the total sum of the overlapped areas (
∑

OAP ) and
the central errors of x (

∑
Ex) and y axes (

∑
Ey). They are normalized by

a number which indicates how many times these values are available (there
is not continuity problem) in the whole video sequence (DZ).

– The next two elements are two counters:
• Overmatch-counter (Oc): how many times the ground truth track is

matched with more than one tracked object data.
• Undermatch-counter (Uc): how many times the ground truth track is not

matched with any track at all.
– Finally, the last term is the number of commutations in the track under

study (
∑

C). The three last elements are normalized by the same value of
normalization as the first one (Time of life, T). It is clear that the lower
the Evaluation function, the better the quality of the tracking system. With
the objective of minimizing the Evaluation function, the Video Surveillance
System has been optimized by ES.

Thus, the evaluation function can be represented as follows:

E =
W1M

2π
+

W2

∑
OAP + W3

∑
Ex + W4

∑
Ey

DZ
+

W5Oc + W6Uc + W7

∑
C

T
(1)

where W1,2,3,4,5,6,7 are the weights for the parameters. Figure 4 depicts the dif-
ferent stages of the Evaluation System in order to have a clear idea of it.

Fig. 4. Evaluation System
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4 Perfomance Optimization

This section of the study shows how the analysis of the evaluation system, and
its application to ES optimization, improves considerably the performance of a
given tracking system. Three parameters explained above are going to be studied
in order to see the effects of them in the optimization of the tracking system: the
threshold, the minimum area and margin gate. The first example shows the video
of the three aircrafts used in the former chapters to explain how the tracking
system works. The study is focused on the airplane that moves from the left
side to the right side of the screen. The adjusting parameters of the system are
randomly selected by the program:

– Threshold: 39
– Minimum Area of blob: 7
– Margin gate: 1.0838

The result of the first execution can be seen in figure 5.

Fig. 5. Performance of example 1 before ES optimization

After using the ES program, the performance of our system improves. The
values of the three parameters under study are:

– Threshold: 16.7
– Minimum Area of blob: 3.15
– Margin gate: 10.95

The two first parameters have lower values and the last one is higher. That
means, for example, that the criterion for a pixel to be considered as a moving
target is less restricted. Then, the sensitivity value and the probability of detec-
tion are higher. Moreover, the value of the minimum area that defines a blob
is also lower so that much more blobs are considered by the system to likely
form future rectangles. And finally, the higher value of margin gate permitted
the search of new valuable information around the rectangle to adapt the target
size and shape with new information.
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Fig. 6. Performance of example 1 after ES optimization

Fig. 7. Performance of example 2 before ES optimization

Thus, the result is a better performance of our system that can be observed
in figure 6.

After the optimization of the adjusting parameters, the first estimation track
is done earlier (34th frame) than in the previous example (42nd frame) and the
track is lost once instead of twice.

The second example takes the second video considered in former chapters
and the aircraft that goes from the left side to the right side of the screen as the
main target to study. The values of the three parameters on which our study is
focus:

– Threshold: 16.7
– Minimum Area of blob: 2
– Margin gate: 2

The surveillance system performance is shown in figure 7.

– Threshold: 38.94
– Minimum Area of blob: 6.9885
– Margin gate: 1.0838
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Fig. 8. Performance of example 2 after ES optimization

The surveillance system performance is shown in figure 8.
The new values show the opposite situation that we had in the previous

example. The threshold and the minimum area of blob are higher and the margin
gate is lower. That means that these values decrease conflicts and interaction
among tracks (no commutation), at the same time that the detection probably
and the criterion threshold to form a blob are lower.

5 Conclusions

We have presented a novel process to evaluate the performance of a tracking
system based on the extraction of information from images filmed by a camera.
The ground truth tracks, which have been previously selected and stored by
a human operator, are compared to the estimated tracks. The comparison is
carried out by means of a set of evaluation metrics which are used to compute a
number that represents the quality of the system. Then, the proposed metric has
been applied as the argument to the evolutionary strategy (ES) whose function
is the optimization of the parameters that rule the tracking system. This process
is repeated until the result and the parameters are good enough to assure that
the system will do a proper performance. The study tests several videos and
shows the improvement of the results for the optimization of three parameters
of the tracking system. In future works we will implement the optimization of the
whole set of parameters using the results of this paper as valuable background.
Furthermore, we plan the evaluation over a high value of videos which present
very different number of targets and weather conditions.
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Abstract. This paper presents the application of machine learning tech-
niques for acquiring new knowledge in the image tracking process, specifi-
cally, in the blobs detection problem, with the objective of improving per-
formance. Data Mining has been applied to the lowest level in the track-
ing system: blob extraction and detection, in order to decide whether
detected blobs correspond to real targets or not. A performance evalu-
ation function has been applied to assess the video surveillance system,
with and without Data Mining Filter, and results have been compared.

1 Introduction

Machine learning techniques could be applied to discover new relations among
attributes in different domains, this application is named data mining (DM) and
it is a part of the knowledge data discovering process (KDD) [1]. The applica-
tion of data mining techniques to a specific problem takes several perspectives:
classification, prediction, optimization, etc. In this work DM techniques will be
use to learn a classifier able to determine if a detected surface on an image could
be considered as a tentative target or not. This classifier allows avoiding many
computations in the association process of the surveillance system. The video
surveillance system considered is able of tracking multiple objects or groups of
objects in real conditions [2]. The whole system is composed of several processes:

– A predictive process of the image background, usually Gaussian models are
applied to estimate variation in the background.

– A detector process of moving targets, detector process works over the previ-
ous and actual acquired frames.

– A grouping pixel process, this process groups correlates adjacent detected
pixels to conform detected regions. These regions, or blobs, could be defined
by a rectangular area or by contour shape.
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– An association process, this process evaluate which detected blob should be
considering as belonging to each existing target.

– A tracking system that maintains a track for each existing target. Usually
filters are based on Kalman filter.

In this work, we propose the application of DM techniques to add new knowl-
edge into the surveillance system. The surveillance system generates a set of files
containing parameters of the detected blobs and, manually, we can generate an
identifier to determine if the blob is part of a target or it is just noise. Using this
strategy, to add new knowledge, for example the optical flow, the surveillance
system is executed with the optimized parameters and the information about the
optical flow is recorded for each blob. Then, the DM techniques could use this
new information to classify the blobs as a real target (if it is a part of a target)
or as false target (if it is only noise). In a previous work [3], an evaluation system
has been proposed, and this system will be used to asses the video surveillance
system, before and after applying machine learning techniques.

2 Surveillance Video System

This section describes the structure of an image-based tracking system. Figure 1
shows a basic architecture of the system. Specifications and details of this video
system have appeared in several publications [4], [5], [6].

Fig. 1. Basic Architecture of the Video Surveillance System

The system starts capturing the first image, which is used to initialize back-
ground estimations. Then, for each new image, tracks are predicted to the cap-
ture time. Pixels contrasting with background are detected and blobs related
with actual targets are extracted. Background statistics for pixels without de-
tection in this frame are actualized to enable next frame detection. Then, an
association process is used to associate one or several blobs to each target. Not
associated blobs are used to initiate tracks, and each track is updated with its
assigned blobs, while, in parallel, a function deletes the tracks not updated us-
ing the last few captures. Since data mining is being applied to the lowest level
in the tracking system, that is, to the ’blobs detection’ block, this is the only
block being briefly described. The positioning/tracking algorithm is based on the
detection of targets by contrasting with local background, whose statistics are
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estimated and updated with the video sequence. Then, the pixel level detector is
able to extract moving features from background, comparing the difference with
a threshold:

Detection(x, y) := [Image(x, y) − Background(x, y)] < THRESHOLD ∗ σ(1)

being σ the standard deviation of pixel intensity. With a simple iterative pro-
cess, taking the sequence of previous images, and weighting to give higher sig-
nificance to most recent frames, the background statistics (mean and variance)
are updated. Finally, the algorithm for blobs extraction marks with a unique
label all detected pixels connected, by means of a clustering and growing re-
gions algorithm [7], and the rectangles which enclose the resulting blobs are
built.

3 Performance Evaluation System

In this section, the evaluation metric proposed in [3], used to assess the quality
of the surveillance system, is briefly described. It has been used the typical
approach to evaluate the detection and tracking system performance: ground
truth is used to provide independent and objective data that can be related to
the observations extracted and detected from the video sequence. The ground
truth has been extracted frame by frame for each scenario. The targets have
been selected and the following data for each target have been stored: number
of analyzed frame, track identifier and values of minimun and maximun (x,y)
coordinates of the rectangle that surrounds the target.

Ground truth and real detections are compared to by the evaluation system.
The evaluation system calculates a number which constitutes the measurement of
the quality level for the tracking system. It uses an ideal trajectory as a reference,
so the output track should be as similar as possible to this ideal trajectory.
With the comparison of the detected trajectories to the ideal one, a group of
performance indicators are obtained to analyse the results and determine the
quality of our tracking process. The evaluation function is computed by giving
a specific weight to each of the next indicators:

– Error in area (in percentage): The difference between the ideal area and the
estimated area is computed. If more than one real track corresponds to an
ideal trajectory, the best one is selected (although the multiplicity of tracks
is annotated as a continuity fault).

– X-Error and Y-Error: The difference among the x and y coordinates of the
bounding box of an estimated object and the ground truth.

– Overlap between the real and the detected area of the rectangles (in percent-
age): The overlap region between the ideal and detected areas is computed
and then compared, in percentage, with the original areas. The program
takes the lowest value to assess the match between tracking output and
ground truth.
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– Commutation: The first time the track is estimated, the tracking system
marks it with an identifier. If this identifier changes in subsequent frames,
the track is considered a commuted track.

– Number of tracks: It is checked if there is not a single detected track matched
with the ideal trajectory. Multiple tracks for the same target or lack of tracks
for a target indicate continuity faults. There are two counters to store how
many times the ground truth track is matched with more than one tracked
object data and how many times the ground truth track is not matched with
any track at all.

With the evaluation function, a number that measures the quality level of
the tracking system is calculated, by means of a weighted sum of different terms
based on the evaluation metrics specified befor. The lower the evaluation func-
tion, the better the quality of the tracking system.

4 Data Mining for Blobs Classification

This section describes how Data Mining has been applied to the ’Blobs Detection’
block in the Video Surveillance System. The architecture of the Data Mining-
based Video Surveillance System is shown in figure 2.

Fig. 2. Architecture of the Data Mining-based Video Surveillance System

The objective of applying Data Mining is to classify detected blobs as ”real
targets” or ”false targets”, removing these false targets to simplify the association
process, and, in this way, improving the whole system. As it has already said, the
detection of targets is based on the intensity gradient in the background image.
But, not all blobs detected are real targets. These false blobs, or false alarms,
may appear because of noise, variation in illumination, etc. It is at this point
where data mining may be applied to remove false alarms without affecting real
targets. The objective of data mining is finding patterns in data in order to make
non-trivial predictions on new data [1]. So, having various characteristics (optical
flow, gradient intensity...) of the detected blobs, the goal is to find patterns that
allow us to decide whether a detected blob corresponds to a real target or not.

The input data take form of a set of examples of blobs. Each instance or
example is characterized by the values of attributes that measure different as-
pects of the instance. The learning scheme needed in this case is a classification
scheme that takes a set of classified examples from which it is expected to learn
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a way of classifying unseen examples. That is, we start from a set of charac-
teristics of blobs together with the decision for each as to whether it is a real
target or not, and the problem is to learn how to classify new blobs as ”real
target” or ”false target”. The output must include a description of a structure
that can be used to classify unknown examples in order that the decision can
be explained. A structural description for the blobs in the form of a decision
tree is the most suitable output here. Nodes in a decision tree involve testing a
particular attribute. Leaf nodes give a classification that applies to all instances
that reach the leaf. To classify an unknown instance, it is routed down the tree
according to the values of the attributes tested in successive nodes, and when
a leaf is reached the instance is classified according to the class assigned to the
leaf. For the blob classification, the algorithm C4.5 has been used [8]. C4.5 is
based in algorithm ID3 [9], both introduced by Quinlan. The basic ideas behind
ID3 are:

– In the decision tree each node corresponds to a non-categorical attribute and
each arc to a possible value of that attribute. A leaf of the tree specifies the
expected value of the categorical attribute for the records described by the
path from the root to that leaf. (This defines what a Decision Tree is).

– In the decision tree at each node should be associated the non-categorical
attribute which is most informative among the attributes not yet considered
in the path from the root. (This establishes what a ’good’ decision tree is).

– Entropy is used to measure how informative is a node, based in Shannon
Theory. (This defines what is meant by ’good’).

C4.5 is an extension of ID3 that accounts for some practical aspects of real
data, such as unavailable values, continuous attribute value ranges, pruning of
decision trees, rule derivation, and so on. In next subsections, the input data
used to represent this problem and the obtained output data are described.

4.1 Input Attributes

Three scenarios, described in next section, have been used. In all cases, the
training examples are extracted in order to obtain the classifier. These examples
correspond to detected blobs, characterized by several attributes and classified
as ’true target’ or ’false target’. Many attributes have been calculated for each
detected blob so a better classification might be done:

1. Intensity Gradient. It is the parameter initially used for detecting blobs. Me-
dia, standard deviation, minimum and maximum values of intensity gradient
inside the blob have been stored.

2. Optical Flow. It calculates the motion of an object, represented as a vector,
using Horn and Schunck algorithm [10] over consecutive frames. Since it is
a vector, module and phase may be considered. Media, standard deviation,
minimum and maximum values of the module and the phase of the optical
flow inside the blob have been stored.
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Fig. 3. Optical flow and edge detection

3. Edge Detection. It marks the points in an image at which the intensity
changes sharply. Three methods have been used: canny algorithm [11], corner
detection and a high-pass filter. In the three cases, the number of pixels of
the blob and its surrounding area that correspond to detected edges has been
stored.

Examples of Optical flow and edge detection are illustrated in figure 3.
To classify the extracted blobs as ’true target’ or ’false target’, the ground

truth must be used. When the overlap of a detected blob with a real tar-
get is superior to a specific value (40%), the blob is classified as a ’true tar-
get’; otherwise, it is classified as a ’false target’. This training has been done
for the three scenarios we are working with. Figure 4 shows a few training
examples.

Fig. 4. Parameters of detected blobs and their classification
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4.2 Output: Trained System and Classifier’s Performance

The algorithm C4.5 has been used adjusting the parameter ’confidence factor’
to 0.0001 [8] in order to obtain a pruned tree small enough, but also with a small
error rate. The trained system obtained, in the form of decision tree, is shown
in figure 5.

Fig. 5. Decision tree obtained by algorithm C4.5 for classifying detected blobs as real
or false targets

As it can be observed from the decision tree, only 5 out of the 15 attributes
are significant; but they cover the three types of parameters:

– Maximum value (max∆I) and standard deviation value (σ∆I) of the Inten-
sity Gradient. In general, a high max∆I means that the detected blob is a
true target and a high σ∆I (probably produced by noise) means that the
detected blob is not a true target.

– Mean value of the module of the Optical Flow (µ|OF |). In general, a blob
with a high µ|OF | corresponds to a true target.

– The values corresponding to Edge Detection obtained by canny algorithm
and by the high-pass filter (HPF). In general, blobs with high Canny or HPF
correspond to true targets.

The algorithm provides as well the classifier’s performance in terms of the
error rate. It has been executed with cross-validation, with the objective of get-
ting a reliable error estimate. Cross-validation means that part of the instances
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is used for training and the rest for classification and the process is repeated
several times with random samples. The confusion matrix is used by C 4.5 to
show how many instances of each class have been assigned to each class:

Table 1. Confusion Matrix

’Target’ ’False Target’ classified as

2958 451 ’Target’
460 2607 ’False Target’

In this case, 2958 blobs have been correctly classified as targets (True Posi-
tives, TP), 2607 blobs have been correctly classified as false targets (True Neg-
atives, TN), 451 blobs have been incorrectly classified as false targets (False
Negatives, FN) and 460 blobs have been incorrectly classified as true targets
(False Positives, FP). The false negatives produce the deletion of true targets,
which may have a cost with respect to no applying machine learning. The per-
centage correct classification (PCC) gives the correctly classified instances:

PCC =
TotalTP + TotalTN

TotalTP + TotalFP + TotalTN + TotalFN
(2)

The global PCC for our scenarios is 85.9327, that is 85.9327 % of the detected
blobs have been correctly classified.

5 Evaluation of the Data Mining - Based Surveillance
Video System

In this section, the Evaluation System described in section 3 is being applied to
the Surveillance Video System with and without the Data Mining-based filter,
and results are being compared. Firstly, the three scenarios that have been used
throughout the whole research are briefly described. They are localized in an
airport where several cameras are deployed for surveillance purposes.

– The first scenario presents two aircrafts moving on inner taxiways between
airport parking positions. A third aircraft appears at the end, overlapping
with one of the other aircraft. Only the aircraft that overlaps is considered.

– In the second scenario, there is an aircraft moving with partial occlusions due
to stopped vehicles and aircraft in parking positions in front of the moving
object. There are multiple blobs representing a single target that must be
re-connected, and at the same time there are four vehicles (vans) moving on
parallel roads.

– Finally, in the third scenario, there are three aircrafts moving in parallel
taxiways and their images overlap when they cross. The three aircrafts are
considered.
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Fig. 6. Results of the Evaluation Function
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Fig. 7. tracks associated to track 0 in scenario 3 with and without DM-based filter

The complexity of the videos, due to overlaps and occlusions, increases from the
first to the third scenario. The Evaluation Function is calculated for each track,
and the results are shown in figure 6.

As it was previously explained, the lower the evaluation function, the better
the tracking system; so, in four of the five cases, the tracking system is improved.
In the only case in which it gets worse is in the simple video, in which the
original tracking system had no problems. It gets worse when using the DM
Filter because the aircraft is detected one frame later. It is the cost of possibly
removing true targets (false negatives), due to the DM filtering (section 4.2).
However, in more complex situations the results are better. Next, an example
of the most significant of the evaluation metrics in the Evaluation function is
given: the number of detected tracks associated to an ideal track. In figure 7 it
is shown the number of associated tracks to track 0 in scenario 3:

It can be easily seen how the number of tracks, ideally one, improves with
the Data Mining-based filter. Without filtering, the number of tracks associated
to track 0 is different from ’1’ in 18 instances; whilst with filtering, this number
reduces to 3, which supposes a decrease of 83.33%. We can see as well, the cost
of filtering: during three frames the track is lost, due to the fact that real targets
have been removed.

6 Conclusions

The initial surveillance video system has been improved in scenarios with some
complexity by applying Data Mining-based filtering. The Data Mining-based
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Filter decides whether the blobs extracted by the system correspond to real tar-
gets or not. Algorithm C4.5 has been used; this algorithm obtains a classifier
in the form of a decision tree from a set of training examples. These training
examples consist on detected blobs, characterized by several attributes, based
on the following parameters: intensity gradient, optical flow and edge detection.
Besides, the training examples must be classified as ’true target’ or ’false target’,
for which, the ground truth, extracted by a human operator, has been used. The
result surveillance video system has been evaluated with an evaluation function
that measures the quality level. This quality level has been improved in all sce-
narios tested, except from one, in which the cost of filtering has become manifest.
Because of filtering, blobs that correspond to real targets may be removed and
this fact may cause the loss of the track or a later detection, what has occurred
in the mentioned scenario. In any case, this scenario was the simplest one and
the initial tracking system had no problems; so, we can conclude that in sce-
narios with more complexity Data Mining-based filtering improves the tracking
system. In future works some actions will be undertaken to continue this ap-
proach, such as, applying machine learning to higher levels of video processing:
data association, parameter estimation, etc.
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Abstract. The paper evaluates the capability of a neural model to cal-
ibrate a digital camera. By calibrate we understand the algorithms that
reconstructs the 3D structure of an scene from its corresponding 2D pro-
jections in the image plane. The most used 3-D to 2-D geometrical pro-
jection models are based in the pin-hole model, a free distortions model.
It is based in the correspondence established between the image and the
real-world points in function of the parameters obtained from examples
of correlation between image pixels and real world pixels. Depending on
the sensor used, different kind of chromatic aberrations would appear
in the digital image, affecting the brightness or the geometry. To be
able to correct these distortions, several theoretical developments based
on pin-hole models have been created. The paper proves the validity of
applying a neural model to correct the camera aberrations, being unnec-
essary to calculate any parameters, or any modelling. The calibration of
autonomous vehicle navigation system will be used to prove the validity
of our model.

1 Introduction

One of the most amazing aspects, when the human perception is studied, is the
observer capability determining the 3-D structure of the objects from bidimen-
sional light patterns. First studies focused in the tridimensional analysis from
images were done by the photogrammetry scientific community. These studies
were retaken by artificial vision scientifics up to develop different approaches for
the same problem. As a general rule, all of them use a video camera as sensor
which provides information about the 3-D world to an artificial vision system.
Our target in 3-D vision must be to explain how to use the 2-D information that
we have from the scene to make measures of the 3-D subjacent world.

The most common 3-D to 2-D model used for geometrical projection is the
pinhole model or perspective projection model (see Figure 1). In this model, the
formation of a digital image is divided in two processes in order to obtain the
digital image itself: (1) The scene projection on the image plane (sensor), and
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Fig. 1. Pin-hole model: ”If the light rays reflected by an illuminated object happen
through a tiny hole in a dark box, the image will be projected upside down in a wall
inside the box”

Fig. 2. Digital image formation processes

(2) the sample and digitalization of this plane. Each process can be raised as a
change in the coordinate system, as depicted in Figure 2.

In this paper we present an alternative to the calibration systems based on
physical, geometrical and analytic models. The neural models try to find a corre-
spondence between the sensorial input information and the recognition problem
that tries to solve. For that it uses the basic behavior of cells or neurons, with
the intention of solving the problem. It is not necessary to know any parameter
of the camera or the kind of aberration that can exist.

The paper is divided in two parts. First, the basic principles of the pin-hole
model are presented, describing the physical concepts in which it is based and the
possible problems involved in itself. Finally, we describe the neural model that
has been designed in order to resolve a particular problem as is the calibration
system in an autonomous vehicle navigation.
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2 Pin-Hole Camera Model

The algorithms that reconstruct the 3-D structure from a scene or calculate the
objects’ space position need the equations that match the 3-D points with their
corresponding 2-D projections. Even though those equations are given by the
projection one, it is normal to suppose that the 3-D points can be given by a
different coordinates system than the camera one and, in addition, it is necessary
to relate the coordinates from a point in the image with their corresponding ones
in the projection system given by the camera. We have, therefore, to calculate
what is known by the extrinsic parameters (those which relate both 3-D reference
systems, see Figure 3) and the intrinsic ones (they relate the reference system of
the camera to the image, see Figure 4). This task it is what is known in computer
vision as camera calibration process [1] and [2].

The first way to calibrate a camera is from a well-known scene. To make the
calibration, a sequence of known points is needed, these points also need to meet
some criteria. From these points can then be obtained the extrinsic and intrinsic
parameters [3].

We have to bear in mind that the pin-hole model is a free-distortion theo-
retical model. Depending on the sensor used, aberrations, especially chromatic
ones, can appear in the digital image, affecting the brightness or the geome-
try. A common aberration is the radial distortion. This is a symmetric one on
the principal point of the image, which causes straight lines to appear curved
in the resulting image as depicted in Figure 5. This causes a displacement of
the imaged point from its theoretically correct position. Which effectively is a
change in the angle between the incoming ray of light and the incident ray of the
imaging sensor. Another kind of camera aberration is the decentring distortions
(Figure 6, which are more of an artefact of errors in the assembly and rota-
tional symmetry of the multiple lens components [4] and [5]. Affinity and shear

Fig. 3. Extrinsic parameters that mark the camera position and orientation with regard
to the scene. They are independent from the type of camera used
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Fig. 4. Intrinsic parameters that represent the internal properties of the camera

are aspects of in-plane distortion that are typical characteristics of the capture
medium. Affinity is effectively a difference in scales between the x and y axis.
And shear describes the non-orthogonallyty between axes. Note that these terms
are only applied to one axis, due to the cross axis nature of this distortion. For
any digital imaging system, the geometric integrity of the image sensor is very
high from geometric consistency inherent in modern semiconductor manufactur-
ing technology, resulting in negligible in-plane distortions. To take into account
these aberrations, more complex camera models have been developed which goal
is to correct them and obtain the 3-D information from the scene in the most
reliable way [6].

Next question we can make ourselves is: which 3-D information can we re-
trieve when we have more than just one image of the scene?. Even though Eu-
clides and Leonardo Da Vinci observed that the left and right eye project differ-
ent images of the same scene, it was not until the 19th century when Wheatstone
provided the first experimental evidence that showed that the depth is perceived
when unlike images are shown to each eye (see Figure 7). Since then, binocular
disparity (angular difference between same features images in the left and right
eyes) has been considered one of the most important sources in 3-D information
recovery [7]. We can start talking now about what it is known in computer vision
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Fig. 5. Radial distortion examples

Fig. 6. Decentering distortion

Fig. 7. When the scene is projected on the image plane, depth information about the
objects is lost

as stereo vision, that is to say, the capability to infer information about the 3-D
structure and distance of a scene obtained from two or more images taken from
different points of view.
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3 Neurocalibraton Model

This paper presents the development of a neural architecture that simplifies the
current calibrating models. In short, the pin-hole model describes the projection
of a real world point into an image point by a sequence of reference systems
transformations. With the neural network to be designed, we will avoid the
calculation complexity of the extrinsic and intrinsic calibrating models, and at
the same time, we will take into consideration the possible optical aberrations
produced by the sensor used in our experimentation.

In the previous section we presented, one of the more known and used cali-
bration models, as it is the pin-hole model, which establishes the extrinsic and
intrinsic parameters. Camera models set up the mathematical relation between
the space points and their equivalents in the camera image. As we have seen,
the image making process is the projection of a three-dimensional world into a
two-dimensional image. Therefore, through the perspective transformation the
correspondence between the real world and the image can be obtained. Neverthe-
less, with the inverse perspective transformation there are more than one possible
correspondence (because in the direct transform there is depth information lost)
and for each image point there is an infinite set of the three-dimensional envi-
ronmental points (see Figure 7). Additional information is necessary to obtain
a certain space point from the image that can supply the depth lost suffered in
the direct transformation. To simplify our problem, we can establish some re-
strictions to our initial knowledge of the environment, for example, determining
that all points in the real world are in the same plane.

Through the autonomous vehicle navigation we will raise a real problem.
The complete system is able to control the vehicle actions and take it to a pre-
known destination. The vehicle is located into a navigation area controlled by a
camera as it is depicted in Figure 8. In order to give the right navigation orders
to the vehicle we have to establish the correspondence between the image and
the real world points. The scene we are going to work with is a road which
is delimited by a set of cones as it seems in Figure 9. With the purpose of
simplifying the problem, we will suppose that the road is in one plane and,
therefore, we are not going to use the altitude information.We will start form
the real world 2-D information and its corresponding 2-D information. Using
a differential GPS (Global Position System) with subcentimetrical precision we
have taken measurements of the Figure 9 cones.

Pattern election is a classical problem in neural models design used to form
our training set. The obtained number should be large enough as well as rep-
resentative of the problem to be solved. But, what will be the implications of
using a reduced sample for designing our neural model?. Let’s imagine a quite
normal situation when the environment conditions are variable. For example, if
we had a camera docked to the car, the correspondence between the real world
and image points would change each time the vehicle modifies its position. It
would then be necessary a simple system, which, starting from a reduced set of
real world points and its corresponding projections into the image plane, would
get a calibration of all the camera pixels. Due to environmental changes this
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Fig. 8. Vehicle and road images

system needs a single calibrating model, which, from a reduced set of points will
be able to obtain a good correspondence between real word and image points.
This is an usual task in humanoid locomotion control, where we are trying to
track a moving goal. As the robot and the goal are both moving, we need a
simple calibration for 3D position measurement [8].

During the execution of a task the vision-system is subject to external in-
fluences such as vibrations, thermal expansions, etc. which affect and possibly
invalidates the initial calibration. Moreover, it is possible that the parameters
of the vision-system, such as the zoom or the focus, are altered intentionally in
order to perform specific vision-tasks [9] and [10].

4 Design of the Model for Autonomous Vehicle
Navigation

In our experiment we have worked with a reduced set of calibrating points. This
relation is the position of 6 out of 12 cones appearing in Figure 9 with it image
plane projection:

N. Latitude(m) Length(m) X Y
1 4462512.89 458960.07 234 436
2 4462510.88 458981.03 129 202
3 4462508.48 459004,79 88 119
4 4462501.99 458999.87 268 115
5 4462503.98 458980.31 374 180
6 4462506.16 458965.70 515 297



526 M.A. Patricio et al.

Fig. 9. Image used for calibration

For the neural model design we have used the JavaNSS tool. After an intensive
investigation a multilayer perceptron has been proposed as the topological model,
using for the learning the backpropagation algorithm. The network topology is
depicted in Figure 10.

Since the activating function of this network neurons uses the sigmoidal func-
tion between 0 and 1, we will make a normalization process in both input and
output data. For each input and output neuron n we apply the following nor-
malization:

n∗ =
n − nmin

nmax − nmin
(1)

where nmax y nmin are the maximum and minimum value of the n neuron.
The most exigent and reliable method for the evaluation of any automatic

approximator is the leave-one-out policy, in which the function –in our case,
the feedforward multilayer perceptron- is trained with all the available training
samples except one, which is used for the evaluation of the function itself. By
repeating the process with all 6 training samples, the average estimation error
is an excellent evaluation of its future performance for new calibration. Note
that the Medium Square Errors (MSQ) are 0.106 meters for Latitude and 0.130
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Fig. 10. Calibration model architecture

meters for Length. These results are accurate enough for aiming to autonomous
vehicle navigation systems.

N. Latitude∗(m) Length∗(m) Latitude error Length error
1 4462512.45 458961.83 0.441668 1.7592848
2 4462511.32 458981.26 0.442144 0.2301248
3 4462508.24 459002,66 0.236234 2.1268832
4 4462502.97 458999.90 0.978057 0.0276320
5 4462503.37 458980.60 0.613003 0.2873744
6 4462506.18 458964.52 0.022140 1.1834904

MSE 0.106044 0.1307226

5 Conclusions

The purpose of this paper is to simplify the traditional calibration models us-
ing an artificial neural network. This model also considers the possible optical
aberrations produced by the camera. We have used an image processing to au-
tomatically detect the cone of the images and, then, a backpropagation neural
algorithm was used to learn the relationships between the image coordinates
and three-dimensional coordinates. This transformation is the main focus of this
study. Using these algorithms, the vehicle is able to navigate and reach its ob-
jective successfully.
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Abstract. In this paper we analyze one important aspect related to
handwritten Optical Character Recognition, specifically, we demonstrate
that the standard procedure of minimizing the number of misclassi-
fied characters could be inconsistent in some applications. To do so, we
consider the problem of automatic reading of amounts written in bank
cheques and show that the widely used confusion matrix does not pro-
vide an appropriate measure of the performance of a particular classifier.
We motivate our approach with some examples and suggest a novel pro-
cedure, using real data, to improve the performance by considering the
true economic costs of the expected misclassification errors.

1 Introduction

Handwritten Optical Character Recognition is one of the most studied problems
in the context of Machine Learning. This interest is justified by the enormous
amount of important applications where a solution can be implemented as well
as because there is a considerable number of techniques that can be applied to
the problem, making OCR very appealing both from the practitioner as well
as from the researcher point of view. Among the many applications of OCR
we can mention the automatic classification of letters using handwritten postal
ZIP codes, automatic reading of administrative formularies of fixed structure,
car plate automatic detection, recognition of text signs in traffic applications
or automatic reading of amounts in bank cheques. From the point of view of
the applicable techniques the catalogue is also huge: Artificial Neural Networks,
Learning Vector Quantizing, Bayesian Techniques, Hidden Markov Models, or
a variety of filtering techniques (such as Wavelets) to cite a few. Moreover, the
field has been recently broadened by the consideration of the many “alphabets”
employed in the particular application (e.g. Kim and Kim, 2003 [3], for the
Chinese, or Battacharya and Chaudry, 2003 [1], for the Bangla).

In this paper we present an application of OCR to the problem of automatic
reading of quantities written on bank cheques. This application will allow us to
remark some important drawbacks of the “standard” procedure employed that
consists on minimizing the number of misclassified digits. We will show that, for
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this particular problem, such approach is inconsistent and, consequently, we will
propose a possible improvement of the standard procedure.

2 Drawbacks in the “Standard” Approach

It is well known that most of the applications of feedforward neural networks to
Optical Character Recognition employ the standard backprop algorithm to find
the optimal configuration of the net. The results of the literature are apparently
good, since in many cases one finds confusion matrices with misclassification
rates well below a 1%. Nevertheless one has to recognize two important facts
that question the validity of this general approach. First, it is obvious that the
error rate for each of the digits is not the overall error rate for the problem
in question: the longer the number one has to recognize, the bigger will be
the overall misclassification rate considering the whole number. The second one
relates to the problem of the asymmetric information content of each of the
digits in a particular application.

To illustrate our arguments, and to motivate the solution proposed, we will
begin by presenting some examples in the context of automatic reading of hand-
written amounts in bank cheques. To make our results easily replicable, we em-
ploy the well known MNIST database, which has been widely applied in the
OCR literature (e.g. Milgram et al, 2004 [4]). The MNIST database (available
at http://yann.lecun.com/exdb/mnist/) is obtained from the special databases
of NIST 1 and 3 which contain handwritten integers between 0 and 9, obtained
form 250 individuals. The database is composed of two sets, the first one com-
prises 60.000 digits, which are usually employed for the training and validation
of the particular technique employed; another set of 10.000 digits is reserved for
testing. The digits are recorded at a granularity of 28x28 pixels and have been
pre-processed using re-dimensioning and normalization based on the moment of
the image and a threshold using two levels.

To motivate the method here proposed, we begin with the “standard” pro-
cedure of applying a feedforward neural network to classify the handwritten
characters into numerals by means of the backprop algorithm. Specifically, we
employ a feedforward neural net with 256 binary inputs (corresponding to each
of the pixels), 30 hidden units and 10 binary output units for the classification (so
that 000000001 corresponds to the prediction of a “9”). The net is trained over
50.000 examples until the validation error, computed along another set of 10.000
examples increases. At this point, training is resumed and the classification of
10.000 unseen examples is done.

To illustrate our first appreciation about the –just- apparent performance of
the nets, generally concluded by visual inspection of the confusion matrices (e.g.
Battacharya and Chaudry, 2003 [1]), let us consider the confusion matrix for the
test set in our example (Table 1). Now assume that we want to automatically
read the amount 6.478,59 Eur. written in a cheque bank, note that even though
the accuracy is apparently very high, the probability of not making a mistake in
that amount is only 50,41% (the product of the conditional probabilities, that
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Table 1. Misclassification rates for the testing set

0 1 2 3 4 5 6 7 8 9

0 97,24% 0,09% 0,68% 0,30% 0,00% 0,90% 0,73% 0,19% 0,92% 0,20%
1 0,10% 96,92% 1,07% 0,89% 1,53% 0,22% 0,31% 1,26% 1,64% 0,69%
2 0,10% 0,26% 86,82% 0,99% 3,16% 0,45% 0,63% 3,60% 1,64% 0,69%
3 0,00% 0,62% 1,36% 91,68% 1,12% 2,80% 0,52% 0,78% 1,95% 1,49%
4 0,00% 0,26% 4,55% 0,50% 82,59% 0,78% 1,88% 3,02% 1,13% 3,67%
5 0,51% 0,18% 0,39% 2,18% 2,65% 90,02% 1,77% 0,10% 1,75% 0,79%
6 1,02% 0,35% 0,29% 0,00% 1,83% 3,14% 92,90% 0,10% 1,85% 0,00%
7 0,20% 0,26% 2,23% 1,29% 2,14% 0,34% 0,10% 89,01% 0,41% 1,68%
8 0,51% 0,79% 1,65% 1,58% 1,22% 1,01% 1,04% 0,19% 87,58% 1,88%
9 0,31% 0,26% 0,97% 0,59% 3,77% 0,34% 0,10% 1,75% 1,13% 88,90%

is, 91,56% * 83,61% * 91,32% * 89,60% * 88,73% * 90,70%), so that even with
these apparently good results one has almost an equal chance to be “right” than
to be “wrong”.

Second, we mentioned before that in general applications not all the num-
bers have the same information content, so that it is biased to consider all the
misclassification rates the same. As an example, again consider our application
in which the researcher is interested in recognizing the amount written in a
cheque. Without loss of generality assume that the cheques are of amounts be-
tween 100,00 Eur. and 10.000,00 Eur., also assume that he has to classify 10.000
cheques and that the economic value of the error is measured in terms of the
absolute difference between the real amount of the cheque and the predicted
amount. Suppose that the researcher has found a “perfect” classifier that makes
no mistakes, obviously the error cost of this classifier is 0 Eur. Now assume that
the researcher has to choose from another set of classifiers that are slightly worse
than the “perfect” classifier but which all of them have exactly the same mis-
classification rate. For example, suppose that each one of the classifiers make
no errors with the exception that, for a particular digit, they have a 90% of
probability of recognizing the true digit and a 10% of confusing it with another
digit. For example, one classifier might have a 90% of probability of recognizing
a “9” when it is a “9” and a 10% of probability of confusing it with an “8”, while
another might have a 90% of probability of recognizing a “3” when it is a “3”
and a 10% of probability of confusing it with an “6”.

Even though, in terms of the confusion matrices, all the classifiers have an
equal performance, in our particular application not every classifier would be
equally valuable. To analyze their relative performance two questions arise. The
first, and most obvious one, is what kind of errors are the most relevant in terms
of magnitude of the difference between the real and predicted amount. This
question has an intuitive answer since one easily recognizes that it would be
worse to “see” a “9” when it is a “2” than to “see” a “3”. One has to conclude
that the bigger the distance between the real and the predicted digit the worse
the classifier would be, so that the researcher would choose among classifiers
which are biased towards confusing a number with another quite close to it.

The second observation relies on recognizing that not all the digits are equally
significant. For example, observe that when writing an amount one rarely em-
ploys a “0” to begin a number, so one would write “9.645,34 Eur.” instead of
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“09.645,34 Eur.”. This means that the “0” has less information content than any
other number since it always occupies a position relatively less relevant than the
others. For similar reasons, the number “5” has less information content than the
number “9”, since the worse it can happen is to misclassify a “5” as a “0” while it
is much worse to classify a “9” as a “0”. These two facts intuitively show us that
even though a set of classifiers have exactly the same overall misclassification
rate they might be quite different in particular applications.

To give an impression of the importance of these two facts, we have simulated
the results that one would obtain in the situation similar to the one described
above. To see this, we calculate the expected cost of misclassification along our
set of 10.000 examples of amounts between 100,00 Eur. and 10.000,00 Eur. by
bootstrapping using the conditional probabilities from each of the classifiers of
the set described above. Then, we calculate the amount, in euros, of the errors
derived. In Table 2 we present the results obtained. First, the costs of the perfect
classifiers are represented in the diagonal. Since every digit is correctly classified
with 100% confidence, the cost of misclassification is 0 Eur. Now we turn our
attention to the cost that, say, a suboptimal classifier would have by confusing a
“0” with a “1”. This cost (10.244,93 Eur.) is represented in cell (2,1) of the table,
while the cost of confusing a “6” with a “7” (96.156,99 Eur.) is represented in
cell (8,7). Our first intuition is confirmed by the simulated results: since one can
observe that for each one of the columns the amount grows with the distance
between the predicted and real digits.

Now, in the last line of the table we have computed the mean amount of
making an error in classifying each of the digits. Note that the mean amount of

Table 2. Simulated error cost of a set of suboptimal classifiers. Currency: Euro

0 1 2 3 4

0 - 101.488,94 190.293,50 334.541,76 432.018,76
1 10.244,93 - 102.854,65 242.034,16 311.531,79
2 17.148,84 119.180,54 - 113.729,35 217.439,70
3 32.397,51 244.366,14 119.593,91 - 108.576,55
4 48.479,20 354.537,45 241.418,86 107.813,51 -
5 48.772,80 476.754,40 293.215,98 189.474,58 82.871,08
6 62.683,44 549.855,70 488.558,44 339.485,91 209.111,04
7 65.052,40 670.441,68 618.025,30 528.642,96 322.980,84
8 87.359,04 755.219,43 614.226,48 610.824,40 457.241,04
9 106.557,39 857.077,12 761.421,29 664.496,22 480.282,75

mean 47.869,56 412.892,14 342.960,84 313.104,29 262.205,36

5 6 7 8 9

0 574.812,55 757.700,16 723.564,94 934.527,76 969.709,50
1 427.372,36 617.199,35 706.388,34 713.593,16 976.143,04
2 329.571,66 469.490,44 495.103,35 604.799,64 853.340,95
3 197.027,14 347.190,78 471.538,80 555.461,00 647.441,94
4 103.822,33 256.110,26 335.627,82 482.042,56 555.868,85
5 - 109.497,03 224.590,18 307.918,95 464.573,16
6 95.504,48 - 109.481,54 246.212,30 310.733,49
7 228.364,48 96.156,99 - 108.017,04 222.830,48
8 318.595,17 202.037,30 110.883,44 - 112.295,04
9 494.337,32 357.194,07 262.827,40 112.665,27 -

mean 276.940,75 321.257,64 344.000,58 406.523,77 511.293,65
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Table 3. Simulated errors’ costs in our example. Currency: Euro

0 1 2 3 4

0 3.522.579,90 3.688.126,30 3.880.625,40 4.007.671,60 4.007.435,00
1 3.462.537,20 3.425.976,90 3.880.336,30 3.710.309,80 3.855.232,10
2 3.669.532,30 3.372.713,30 3.626.198,20 3.677.129,60 3.836.345,40
3 3.427.312,90 3.706.379,90 3.585.130,80 3.609.577,80 3.580.478,00
4 3.564.533,30 3.722.341,10 3.802.196,70 3.869.768,40 3.551.028,30
5 3.476.497,80 4.052.518,80 3.847.043,30 3.531.399,30 3.684.498,20
6 3.481.483,70 4.081.013,20 4.257.979,30 3.780.995,00 3.800.268,40
7 3.618.668,60 4.088.134,40 4.091.024,90 3.933.851,40 3.778.071,90
8 3.784.587,30 4.361.079,10 4.125.377,00 4.218.901,40 3.936.367,30
9 3.720.595,60 4.278.992,20 4.273.196,10 4.259.486,60 4.134.155,40

mean 3.572.832,86 3.877.727,52 3.936.910,80 3.859.909,09 3.816.388,00

5 6 7 8 9
0 4.192.370,90 4.144.817,40 4.297.987,00 4.419.442,90 4.667.598,70
1 3.909.367,30 4.236.804,70 4.376.207,20 4.366.086,10 4.356.258,80
2 3.833.367,30 4.043.807,20 4.004.849,70 4.144.817,20 4.310.652,50
3 3.555.607,80 3.785.614,50 3.924.564,00 4.198.597,70 4.278.781,80
4 3.801.824,60 3.710.193,80 3.890.579,40 3.852.468,80 4.209.429,80
5 3.576.906,40 3.642.085,80 3.865.735,40 3.958.823,60 4.002.366,60
6 3.784.894,60 3.596.745,80 3.640.753,80 3.847.567,40 3.857.174,10
7 3.857.712,20 3.724.306,20 3.555.743,80 3.717.162,80 3.687.857,90
8 3.705.728,70 3.883.724,10 3.673.293,00 3.470.576,10 3.863.739,10
9 3.820.623,60 3.917.022,20 3.585.617,80 3.648.847,30 3.553.922,70

mean 3.803.840,34 3.868.512,17 3.881.533,11 3.962.438,99 4.078.778,20

misclassifying a “0” is 47.869,56 Eur. while the mean amount of misclassifying a
“9” is 511.293,65 Eur. This illustrates our second intuition that it is much worse
(in fact, ten times worse, in this case) to misclassify a “9” than a “0”. Finally
note that, as intuitively expected, the central digits (numbers “4”and “5”) also
lead to lower misclassification costs.

To conclude our illustration, in Table 3 we have repeated a similar experiment
but now using the true conditional probabilities obtained in Table 1. Now, in the
diagonal we show the actual cost of the classifier without altering the conditional
probabilities (so that each of the elements of the table corresponds to a particular
realization). In each one of the rest of the cells we compute the corresponding cost
by decreasing the probability of being right (predicting a “5” when it is in fact
a “5”) by a 10% and increasing by this amount the probability of making some
kind of error (predicting a “4” when it is in fact a “5” –cell (5,6)- or predicting a
“6” when it is in fact a “4” –cell (5,7)-). Note that the even though the differences
are less significant that in the simulated extreme case, the conclusions remain
he same: it is much better to make an error in predicting “0s” than “9s”, it is
relatively better to make mistakes in “5s” than in “1s” or “9s” and it is better
to predict an “8” when it is in fact a “9” than to predict a “0”.

3 Proposed Approach

There are several ways to remedy the problems we have mentioned. Probably
the easiest way to improve the accuracy is to employ a different loss function



534 A. Moratilla and I. Olmeda

which takes into account the asymmetry in the importance of misclassifications
costs and then to employ a modified backprop algorithm to minimize it. Nev-
ertheless, this approach does no take into account that our final objective is to
minimize some specific cost associated to the errors made as a consequence of
the conditional probabilities of the confusion matrix, and the optimal network
in terms of the penalized loss function might not be the one which gives the best
results in classifying an arbitrary number.

Alternatively, we suggest employing such loss function to produce confusion
matrices which would lead to minimize the expected classification costs specific
to the problem. Note that our proposal is dramatically different from the previous
in one important aspect: it only employs the penalized function as a mean to
calculate confusion matrices which are then used to estimate the expected error
of classifying a set of numbers of arbitrary length, and not the numbers (just
one digit) of the specific training set.

The procedure here proposed takes two steps. In the first one, we employ
the standard to minimize the mean squared misclassification errors, while in the
second step we minimize the total cost of misclassifications. To be concrete, let
us assume that we have a set of n examples in the training set. In the first step we
assume the “standard” procedure which consists on training with backprop until
an increase in error along the validation set is found. Assume that we obtain a set
of predictions from which we can calculate the corresponding confusion matrix
(such as the one reported in table 1). Let ci,jbe the conditional probability of
classifying digit “j′′ as an “i′′and consider the loss function:

error =
n∑

i=1

n∑
j=1

ci,jP (i) |i − j|

where

P (i) =




λ1 , 1 < λ1 if i = 5
λ2, λ1 < λi

2 if i �= 5, i �= 0
1 if i = 0

Note that this function is simply an average of the conditional probabilities out
of the main diagonal of the confusion matrix. Also note that it penalizes more
heavily the deviations for the non-central digits, gives more weight to important
deviations and pays relatively less importance to the misclassification of the
number zero1.

1 One problem with such approach is that the choice of function and the penalty
term is completely arbitrary, so that a bad choice might lead to suboptimal results.
Alternatively one might directly use the expected misclassification cost to obtain
the weights of the network since this is finally the true objective function. Note that
this opens the possibility to implicitly consider that probability in the appearance
of a particular number in the dataset is not uniform and that its importance in
economic terms might differ. Here we only consider the simple case and leave the
other possibility for future work.
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Fig. 1. Iterations of the GA

Fig. 2. Misclassification costs
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In the second step we try to minimize the expected errors of misclassification
derived from the corresponding confusion matrix. To do so, let us now assume
that at every iteration, we employ an appropriate optimization procedure to
obtain a set of weights that improves the above loss function. In particular, we
can employ the simple Genetic Algorithm (Holland, 1976). Then, we make one
pass along the training dataset and produce the corresponding new confusion
matrix. Note that this confusion matrix can be used to estimate the expected
error by bootstrapping from the implied conditional probabilities and by simply
comparing, in absolute terms, the real and predicted figures. Note that after
that we compute the expected cost of misclassification using the corresponding
confusion matrices for the training and validation sets, that is ctra(i, j), cval(i, j)
we can employ an increase in the later as the stopping criterion to prevent from
overtraining. After the optimal network is found we employ it to produce the
final confusion matrix for the test set which is finally employed to estimate the
final cost of misclassification.

The approach proposed is extremely computationally demanding and, for this
reason, we present an application on a “toy” problem to illustrate the procedure.
We employ 6.000 examples randomly chosen from the database to configure our
training, validation and testing set (so that each of the sets has 2.000 examples).
To compute the expected training, validation and testing error costs we employ
1.000 random amounts between 100 and 10.000Eur. (no decimals). The GA is
run using a population of 20 individuals, with crossover and mutation rates of
0.5 and 0.00001, respectively. The number of iterations was set to 50 since, as we
shall see, the algorithm converges quite rapidly. The parameters in our penalty
function were λ1 = 1.2 and λi

2=0.7+0.5*log(|5-i|)+1).
In figure 1 we plot the fitness values for the best individual as well as the

mean fitness for the whole population. Note that the algorithm converges quite
fast. In figure 2 we present the total expected costs (in euros) of the misclassifi-
cation along the training, testing and validation sets. Note that the results are
promising: for the net chosen to minimize the expected validation costs, we find
improvement in the expected testing cost of about a 9%. This means a reduction,
in economic terms, of about 60.000 Eur. since the total testing expected error
reduces from 668.029 Eur. to 610.130 Eur.

4 Conclusions

In this paper we have proposed a novel method, in the context of Optical Charac-
ter Recognition, to reduce the misclassification error of neural network classifiers
in problem of recognizing the handwritten amounts of bank cheques. Our method
relies in the fact that, in this application, neither all the characters have the same
information content nor the misclassification errors have the same economic im-
pact. The approach proposed effectively exploits these two facts by employing
a modified penalty function, which is optimized through heuristic procedures,
and by using the conditional probabilities implicit in the confusion matrix to
estimate the expected error of misclassifications. Even though our results are
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purely preliminary, they suggest several extensions to improve network accuracy
in OCR problems.
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Abstract. Radial Basis Function Neural Networks (RBFNN) has been
applied successfully to solve function approximation problems. In the
design of an RBFNN, it is required a first initialization step for the
centers of the RBFs. Clustering algorithms have been used to initialize
the centers, but these algorithms were not designed for this task but
rather for classification problems. The initialization of the centers is a
very important issue that affects significantly the approximation accu-
racy. Because of this, the CFA (Clustering for Function Approximation)
algorithm has been developed to make a better placement of the centers.
This algorithm performed very good in comparison with other cluster-
ing algorithms used for this task. But it still may be improved taking
into account different aspects, such as the way the partition of the input
data is done, the complex migration process, the algorithm’s speed, the
existence of some parameters that need to be set in a concrete order to
obtain good solutions, and the convergence guaranty. In this paper, it is
proposed an improved version of this algorithm that solves some prob-
lems that affected its predecessor. The approximation of ECG signals is
not straightforward since it has low and high frequency components in
different intervals of a heart stroke. Furthermore, each interval (P wave,
the QRS complex, T wave) is related with the behaviour of specific parts
of the heart. The new algorithm has been tested using the ECG signal as
the target function to be approximated obtaining very small approxima-
tion errors when it is compared with the traditional clustering technique
that were used for the centers initialization task. The approximation of
the ECG signal can be useful in the diagnosis of certain diseases such as
Paroxysmal Atrial Fibrillation (PAF).

1 Introduction

Designing an RBF Neural Network (RBFNN) to approximate a function from a
set of input-output data pairs, is a common solution since this kind of networks
are able to approximate any function [5, 10]. Formally, a function approximation
problem can be formulated as, given a set of observations {(xk; yk); k = 1, ..., n}
with yk = F (xk) ∈ IR and xk ∈ IRd, it is desired to obtain a function G so
yk = G (xk) ∈ IR with xk ∈ IRd. Once this function is learned, it will be possible
to generate new outputs from input data that were not specified in the original
data set.
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The initialization of the centers of RBFs is the first step to design an RBFNN.
This task has been solved traditionally using clustering algorithms [8] [11]. Clus-
tering techniques have been applied to classification problems [7], where the task
to solve is how to organize observed data into meaningful structures. In classifi-
cation problems, the input data has to be assigned to a pre-defined set of labels,
thus, if a label is not assigned correctly, the error will be greatly increased. In
the functional approximation problem, a continuous interval of real numbers is
defined to be the output of the input data. Thus, if the generated output value
is near the real output, the error does not increase too much.

In this context, a new clustering algorithm for functional approximation prob-
lems was designed in our research group: Clustering for Functional Approxima-
tion (CFA)[6].The CFA algorithm uses the information provided by the function
output in order to make a better placement of the centers of the RBFs. This
algorithm provides better results in comparison with traditional clustering algo-
rithms but it has several elements that can be improved.

In this paper, a new algorithm is proposed, solving all the problems presented
in the CFA algorithm using fuzzy logic techniques, and improving results, as it
will be shown in the experiments section. In this section, the target function
will be the ECG signal of a human person. The approximation an ECG signal
is not straightforward since it has low and high frequency components in dif-
ferent intervals of a heart stroke. Furthermore, each interval (P wave, the QRS
complex, T wave) is related with specific parts of the heart. Therefore, diverse
pathologies are diagnosed studying in detail specific intervals within the ECG
traces, for instance the P wave is related with the atrial activity while ven-
tricular fibrillation can be easily detected observing the evolution of the QRS
complexes.

For certain diagnosis applications the shape of a certain interval of the ECG
is of interest. Some approaches extract templates of a certain area by averaging
the activity in this area over a number of heart strokes [9] or by extracting
morphological features of these intervals [13, 4] (such as the amplitude of the P
wave, the integral of the P wave). These techniques require the definition of a
P wave interval and the accurate measurement of different characteristics. But
the previous methods are simplified ways to characterize the heart activity in a
certain interval, which can be done more accurately with sophisticated function
approximation methods.

2 RBFNN Description

A RBFNN F with fixed structure to approximate an unknown function F with
n entries and one output starting from a set of values {(xk; yk); k = 1, ..., n}
with yk = F (xk) ∈ IR and xk ∈ IRd, has a set of parameters that have to be
optimized:

F (xk;C,R,Ω) =
m∑

j=1

φ(xk; cj , rj) · Ωj (1)
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where C = {c1, ..., cm} is the set of RBF centers, R = {r1, ..., rm} is the set
of values for each RBF radius, Ω = {Ω1, ..., Ωm} is the set of weights and
φ(xk; c j , rj) represents an RBF. The activation function most commonly used
for classification and regression problems is the Gaussian function because it is
continuous, differentiable, it provides a softer output and improves the inter-
polation capabilities [2, 12]. The procedure to design an RBFNN for functional
approximation problem is shown below:

1. Initialize RBF centers cj

2. Initialize the radius rj for each RBF
3. Calculate the optimum value for the weights Ωj

The first step is accomplished by applying clustering algorithms, the new
algorithm proposed in this paper will initialize the centers, providing better
results than other clustering algorithms used for this task.

3 Clustering for Function Approximation Algorithm:
CFA

This algorithm uses the information provided by the objective function output
in such a way that the algorithm will place more centers where the variability
of the output is higher instead of where there are more input vectors.

To fulfill this task, the CFA algorithm defines a set O = {o1, ..., om} that
represents a hypothetic output for each center. This value will be obtained as a
weighted mean of the output of the input vectors belonging to a center.

CFA defines an objective function that has to be minimized in order to con-
verge to a solution:

m∑
j=1

∑
xk∈Cj

‖xk − cj‖2ωkj

m∑
j=1

∑
xk∈Cj

ωkj

(2)

where ωkj weights the influence of each input vector in the final position a center.
The bigger the distance between the expected output of a center and the real
output of an input vector is, the bigger the influence in the final result will be.
The calculation of w is obtained by:

ωkj =
|F (xk) − oj |

n
max
i=1

{F (xi)} −
n

min
i=1

{F (xi)}
+ ϑmin, ϑmin > 0. (3)

The first addend in this expression calculates a normalized distance (in the
interval [0,1]) between F (xk) and oj , the second addend is a minimum contri-
bution threshold. The smaller ϑmin becomes, the more the centers are forced to
be in areas where the output is more variable.
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The CFA algorithm is structured in three basic steps: Partition of the data,
centers and estimated output updating and a migration step.

The partition is performed as it is done in Hard C-means [3], thus, a Voronoi
partition of the data is obtained. Once the input vectors are partitionated, the
centers and their estimated outputs have to be updated, this process is done
iteratively using the equations shown below:

cj =

∑
xk∈Cj

xkωkj∑
xk∈Cj

ωkj
oj =

∑
xk∈Cj

F (xk)ωkj∑
xk∈Cj

ωkj
. (4)

The algorithm, to update centers and estimated outputs, has an internal
loop that iterates until the total distortion of the partition is not decreased
significantly.

The algorithm has a migration step that moves centers allocated in input
zones where the target function is stable, to zones where the output variability
is higher. The idea of a migration step was introduced in [14] as an extension of
Hard C-means.

CFA tries to find an optimal vector quantization where each center makes
an equal contribution to the total distortion [5]. This means that the migration
step will iterate, moving centers that make a small contribution to the error to
the areas where centers make a bigger contribution.

3.1 Flaws in CFA

CFA has some flaws that can be improved, making the algorithm more robust
and efficient and providing better results.

The first disadvantage of CFA is the way the partition of the data is made.
CFA makes a hard partition of the data where an input vector can belong
uniquely to a center, this is because it is based on the Hard C-means algo-
rithm. When Fuzzy C-means [1] was developed, it demonstrated how a fuzzy
partition of the data could perform better than a hard partition. For the func-
tional approximation problem, it is more logical to apply a fuzzy partition of the
data because an input vector can activate several neurons with a certain degree
of activation, in the same way an input vector can belong to several centers in a
fuzzy partition.

The second problem is the setting of a parameter which influences critically
the results that can be obtained. The parameter is ϑmin, the minimum contri-
bution threshold. The smaller this parameter becomes, the slower the algorithm
becomes and the convergence becomes less warranted. The need of a human
expert to set this parameter with a right value is crucial when it is desired to
apply the algorithm to different functions, because a wrong value, will make the
algorithm provide bad results.

The third problem of CFA is the iterative process to converge to the solu-
tion. The convergence is not demonstrated because it is presented as a weighted
version of Hard C-means, but the equations proposed do not warrant the con-
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vergence of the algorithm. The iterative method is quite inefficient because it
has to iterate many times on each iteration of the main body of the algorithm.

The last problem CFA presents is the migration process. This migration step
is quite complex and makes the algorithm run very slow. It is based on a distor-
tion function that require as many iterations as centers, and adds randomness
to the algorithm making it not too robust.

4 Improved CFA Algorithm: ICFA

Let’s introduce the new elements in comparison with CFA, and let’s see the
reasons why this new elements are introduced.

4.1 Input Data Partition

As it was commented before, for the functional approximation problem, is better
to use a fuzzy partition, but CFA uses a hard partition of the data. In ICFA, in
the same way as it is done in Fuzzy C-means, a fuzzy partition of the data is
used, thus, an input vector belongs to several centers at a time with a certain
membership degree.

4.2 Parameter w

In CFA, the estimated output of a center is calculated using a parameter w (3).
The calculation of w implies the election of a minimum contribution value (ϑmin)
that will affect in a serious way the performance and the computing time of the
algorithm.

In order to avoid the establishment of a parameter, ICFA removes this thresh-
old, and the difference between the expected output of a center and the real out-
put of the input data is not normalized. Thus, the calculation of w is done by:

wkj =
|F (xk) − oj |

n
max
i=1

{F (xi)} −
n

min
i=1

{F (xi)}
(5)

where F (x) is the function output and oj is the estimated output of cj .

4.3 Objective Function and Iterative Process

In order to make the centers closer to the areas where the target function is
more variable, a change in the similarity criteria used in the clustering process
it is needed. In Fuzzy C-means, the similarity criteria is the euclidean distance.
Proceeding this way, only the coordinates of the input vectors are used, thus,
the values of the membership matrix U for a given center will be small for the
input vectors that are far from that center, and the values will be big if the
input vector is close to that center. For the functional approximation problem,
this is not always true because, given a center, its associated cluster can own



Using Fuzzy Clustering Technique for Function Approximation 543

many input vectors even if they are far from this center but they have the same
output values.

To consider these situations, the parameter w is introduced (5) to modify the
values of the distance between a center and an input vector. w will measure the
difference between the estimated output of a center and the output value of an
input vector. The smaller w is, the more the distance between the center and the
vector will be reduced. This distance is calculated now by modifying the norm
in the euclidean distance:

dkj = ‖xk − cj‖2 · w2
kj . (6)

The objective function to be minimize is redefined as:

Jh(U,C,W ) =
n∑

k=1

m∑
i=1

uh
ik‖xk − ci‖2w2

ik (7)

where wik = |Yk − oi|. This function is minimized applying the LS method,
obtaining the following equations that will converge to the solution:

uik =


 m∑

j=1

(
dik

djk

) 2
h−1




−1

ci =

n∑
k=1

uh
ikxkw2

ik

n∑
k=1

uh
ikw2

ik

oi =

n∑
k=1

uh
ikYkd2

ik

n∑
k=1

uh
ik

d2
ik

(8)

where dij is the weighted euclidean distance between center i and input vector j,
and h > 1 is a parameter that allow us to control how fuzzy will be the partition
and usually is equal to 2.

These equations are the equivalence of the ones defined for CFA (4) where
the centers and their expected outputs are updated. These equations are ob-
tained applying Lagrange multipliers and calculating the respect derivatives of
the function, so convergence is warranted, unlike in CFA. ICFA, requires only
one step of updating, being much more efficient than CFA where an internal
loop is required on each iteration of the algorithm to update the centers and the
outputs.

4.4 Migration Step

As in CFA, a migration step is incorporated to the algorithm. CFA’s migration
iterates many times until each center contributes equally to the error of the func-
tion defined to be minimized. On each iteration, all centers are considered to be
migrated, making the algorithm inefficient and, since it adds random decisions,
the migration will affect directly to the robustness of the final results.

ICFA only makes one iteration and instead of considering all centers to be
migrated, it performs a pre-selection of the centers to be migrated. The distortion
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of a center is the contribution to the error of the function to be minimized. To
decide what centers will be migrated, it is used a fuzzy rule that selects centers
that have a distortion value above the average.By doing this, centers that do
not add a significant error to the objective function are excluded because their
placement is correct and they do not need help from other center. The idea is
that if two centers introduce a big error, putting them together can decrease the
total error.

There is a fixed criteria to choose the centers to be migrated, in opposite to
CFA where a random component was introduced at this point. The center to
be migrated will be the one that has assigned the smallest value of distortion.
The destination of the migration will be the center that has the biggest value
of distortion. The repartition of the input vectors between those two it is like in
CFA. If the error is smaller than the one before the migration step, the migration
is accepted, otherwise is rejected.

4.5 ICFA General Scheme

Once all the elements that compose the algorithm have been described, the
general scheme that ICFA follows is:

Do
Calculate the weighted distance between Ci and X using w
Calculate the new Ui, Ci using Ui and Oi using Ci

Migrate
While(abs(Ci−1-Ci<threshold)

In ICFA, the start point is not a random initialization of matrix U as in
Fuzzy C-means. In the new algorithm, centers will be distributed uniformly
through the input data space and their estimated outputs will be equal to the
difference between the maximum and the minimum value of the output function.
Proceeding like this, the robustness of the algorithm is only affected by the
random component added in the migration with the simulated annealing.

5 Experimental Results

The first experiment consists in approximate a normal person ECG signals. To
compare the results provided by the different algorithms, it will be used the
normalized root mean squared error (NRMSE).

The radii of the RBFs were calculated using the k-neighbors algorithm with
k=1. The weights were calculated optimally by solving a linear equation system.

The data set used for this experiment consist in the record of the signals
P,Q,R,S,T obtained by using the electrocardiogram technique. The data is pro-
vided by PhysioNet at its Prediction Challenge Database. The signal used be-
longs to the first minute of record ”n01”.

Table 1 shows the errors when approximating the first pulse of ECG (Fig. 1)
using the ICFA, Fuzzy C-means and CFA algorithms. In Fig. 1 are represented
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Table 1. Mean and Standard Deviation of the approximation error (NRMSE) for
function the ECG signal (Training Pulse) before and after local search algorithm

Clusters FCM CFA ICFA

4 0.966(0.009) 0.948(0.010) 0.449(0)
5 0.938(3E-4) 0.914(0.001) 0.446(0)
6 0.929(1E-4) 0.883(0.023) 0.437(0)
7 0.915(020) 0.871(0.020) 0.422(0)
8 0.914(0.001) 0.846(0.010) 0.336(0)
9 0.893(3E-4) 0.838(0.017) 0.506(0)

Clusters FCM CFA ICFA

4 0.238(0.036) 0.495(0.236) 0.160(0)
5 0.880(0.001) 0.204(0.009) 0.066(0)
6 0.515(0.383) 0.154(0.029) 0.068(0)
7 0.694(0.351) 0.101(0.044) 0.055(0)
8 0.657(0.334) 0.067(0.029) 0.050(0)
9 0.658(0.353) 0.077(0.030) 0.044(0)

ECG Signal Approximation Errors
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Fig. 1. ECG signal, in red, the first heartbeat of training, in green, the test heartbeat.
Mean and Standard Deviation of the approximation error (NRMSE) after local search
algorithm

graphically the results shown in Table 1. In this table are represented the results
before and after applying the Levenberg-Mardquardt local search algorithm. As
it is shown, the new algorithm proposed makes a better placement of the centers
providing good results even before applying the local search algorithm.

The results clearly show the improvement in performance of ICFA in com-
parison with CFA and its predecessors, not improving only the results, but the
robustness. The ICFA algorithm provides the best approximation in comparison
with the others clustering algorithms using only 5 centers. This means that it
identifies the 5 low and high frequency components in different intervals of a
heart stroke (P wave, the QRS complex, T wave). In Figure 2 this is illustrated,
this figure shows the placement of the centers after the execution and the lo-
cal search algorithm using ICFA. It is clear how it places one center on each
signal.

The approximation of the signals is tested with the next pulse on the ECG
obtaining the results shown in Table 2, in this table we can appreciate how the
RBFNN generated using the new algorithm still makes a good approximation of
the signal.
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Fig. 2. ECG signal and its approximation. Each star represents one center

Table 2. Mean and Standard Deviation of the approximation error (NRMSE) for the
ECG signal (Test Pulse) before and after local search algorithm

Clusters FCM CFA ICFA

4 0.972(0.) 0.954(0.008) 0.458(0)
5 0.946(3E-4) 0.925(0.001) 0.462(0)
6 0.936(1E-4) 0.895(0.023) 0.457(0)
7 0.924(020) 0.883(0.044) 0.432(0)
8 0.923(0.001) 0.857(0.010) 0.352(0)
9 0.907(3E-4) 0.848(0.020) 0.507(0)

Clusters FCM CFA ICFA

4 0.254(0.042) 0.513(0.243) 0.184(0)
5 0.894(0.001) 0.209(0.015) 0.114(0)
6 0.525(0.383) 0.172(0.021) 0.100(0)
7 0.702(0.351) 0.121(0.039) 0.083(0)
8 0.665(0.334) 0.083(0.013) 0.085(0)
9 0.665(0.353) 0.088(0.016) 0.075(0)

6 Conclusions

RBFNNs provides good results when they are used for functional approximation
problems. The CFA algorithm was designed in order to make the right initializa-
tion of the centers for the RBFs improving the results provided by the clustering
algorithms that were used traditionally for this task. CFA had some mistakes and
disadvantages that could be improved. In this paper, a new algorithm which fix
all the problems in CFA is proposed. This new algorithm performs much better
than its predecessor.

If we use function approximation to characterize ECG traces with a restricted
number of centres. These centres (their position with respect to the QRS com-
plex) and their specific characteristics (amplitude, sigma) embed automatically
features that can be of interest for diagnosis of heart diseases. The evolution of
these features along a ECG trace can be of interest for instance to predict heart
crisis such as atrial or ventricular fibrillation which is part of our future work.
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Abstract. Since fusion plasma experiment generates hundreds of sig-
nals. In analyzing these signals it is important to have automatic mecha-
nisms for searching similarities and retrieving of specific data in the wave-
form database. Wavelet transform (WT) is a transformation that allows
to map signals to spaces of lower dimensionality, that is, a smoothed and
compressed version of the original signal. Support vector machine (SVM)
is a very effective method for general purpose pattern recognition. Given
a set of input vectors which belong to two different classes, the SVM maps
the inputs into a high-dimensional feature space through some non-linear
mapping, where an optimal separating hyperplane is constructed. This
hyperplane minimizes the risk of misclassification and it is determined
by a subset of points of the two classes, named support vectors (SV). In
this work, the combined use of WT and SVM is proposed for searching
and retrieving similar waveforms in the TJ-II database. In a first stage,
plasma signals will be preprocessed by WT in order to reduce the dimen-
sionality of the problem and to extract their main features. In the next
stage, and using the new smoothed signals produced by the WT, SVM
will be applied to show up the efficency of the proposed method to deal
with the problem of sorting out thousands of fusion plasma signals.

1 Introduction

Databases in nuclear fusion experiments are made up of thousands of signals.
For this reason, data analysis must be simplified by developing automatic mech-
anisms for fast search and retrieval of specific data in the waveform database.
In particular, a method for finding similar waveforms would be very helpful.

In [1] a method is proposed to find similar time sequences using Discrete
Fourier Transformation (DFT) to reduce the dimensionality of the feature vec-
tors, that is, to minimize the computation time for indexing and comparing
signals. In [2], the previous DFT based method is used to search similar phe-
nomena in waveform databases but just it is applied with slowly varying signals.
However, the DFT has difficulties when used with fast varying waveforms since
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time information is lost when transforming to the frequency domain and non-
stationary or transitory characteristics can not be detected. The Short Time
Fourier Transform (STFT) can obtain the non-stationary characteristics using
an analysis window. However, the precision is determined by the analysis window
that is the same for all frequencies. Wavelets (WT) offers an efficient alterna-
tive to data processing and provides many advantages: 1) data compression, 2)
computing efficiency, and 3) simultaneous time and frequency representation.
Because of these characteristics, wavelets have a growing impact on signal pro-
cessing applications [3, 4].

Support Vector Machines (SVM) is a very effective method for general pur-
pose pattern recognition [5, 6, 7]. In a few words, given a set of input vectors
which belong to two different classes, the SVM maps the inputs into a high-
dimensional feature space through some non-linear mapping, where an optimal
separating hyperplane is constructed in order to minimize the risk of misclassi-
fication. The hyperplane is determined by a subset of points of the two classes,
named Support Vectors (SV). Several methods had been proposed to cope with
multi-category classification [8].

In this work, preliminary results are shown when using WT techniques for
characterizing the signals and SVM as the technique for pattern recognition
and information retrieval. The proposed method has been applied to the TJ-II
stellarator database. The TJ-II is a stellarator device [9] (heliac type, B(0) ≤
1.2T , R(0) = 1.5m, 〈a〉 ≤ 0.22m) located at CIEMAT (Madrid, Spain) that can
explore a wide rotational transform range (0.9 ≤ iota/2π ≤ 2.2). TJ-II plasmas
are produced and heated with ECRH (2 gyrotrons, 300 kW each, 53.2 GHz, 2nd
harmonic, X-mode polarization) and NBI (300 kW). At present, 928 digitization
channels are available for experimental measurements in the TJ-II.

2 Wavelet Transform

WT are basis functions used in representing data or other functions. Wavelet al-
gorithms process data at different resolutions or decomposition levels in contrast
with DFT where only frequency components are considered. The construction
of the first orthonormal system by Haar [10] is an important milestone since the
Haar basis is still a foundation of modern wavelet theory. In this work, the use
of the Haar wavelets in the problem of extracting characteristic of the plasma
signals will be considered.

The motivation for using the WT is to have a decomposition method that is
fast to compute and requires little data storage for each signal. The Haar wavelet
is chosen for many advantages: (1) it allows good approximation with a subset
of coefficients, (2) it can be computed quickly and easily, requiring linear time
in the length of the signal and simple coding, and (3) it preserves Euclidean
distance. Concrete mathematical foundations can be found in [11]. In the WT
with Haar base, there are two kinds of functions called approximation function
and difference function. The approximation function generates a sequence of the
averages between two adjacent values of the input sequence, that is, the sampled
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signal. The difference function generates a sequence of the differences between
two consecutive data in the current approximation sequence. These functions are
applied recursively until the number of the elements in the difference sequence
is one. That is, the ith approximation sequence Ai and difference sequence Di

are defined as follow:

Ai = {Ai−1(1)+Ai−1(2)
2 , Ai−1(3)+Ai−1(4)

2 , . . . , Ai−1(m−1)+Ai−1(m)
2 }

Di = {Ai−1(1)−Ai−1(2)
2 , Ai−1(3)−Ai−1(4)

2 , . . . , Ai−1(m−1)−Ai−1(m)
2 }

where Ai(j) is the j-th element in the sequence Ai and m is the number of the
elements in the sequence Ai−1. Next, a brief example of the Haar transformation
of a discrete sequence −→

X = {9, 7, 4, 8, 5, 3, 8, 8} is shown (Table 2).

Table 1. Example of the Haar transformation

Approximation Averages Coefficients (Differences)

8 {9, 7, 4, 8, 5, 3, 8, 8} -
4 {8, 6, 4, 8} {1, -2, 1, 0}
2 {7, 6} {1, -2}
1 {6.5} {0.5}

Approximation 8 is the full resolution of the discrete sequence. In approxi-
mation 4, {8, 6, 4, 8} are obtained by taking the average of {9, 7}, {4, 8}, {5, 3}
and {8, 8} at resolution 8 respectively. The coefficients {1, -2, 1, 0} at resolution
4 are the differences of {9, 7}, {4, 8}, {5, 3} and {8, 8} divided by two respec-
tively. This process is continued until an approximation of 1 is reached. The Haar
transform H(−→x ) = {c, d0

0 d1
0, d

1
1, d

2
0, d

2
1, d

2
2, d

2
3} is obtained which is composed of

the last average value 6.5 and the coefficients found on the right most column.
It should be pointed out that c is the overall average value of the whole time
sequence.

The reason of using Haar transform to replace DFT is based on several ev-
idences. The first reason is on the pruning power. The nature of the Euclidean
distance preserved by Haar transform and DFT are different. In DFT, compar-
ison of two time sequences is based on their low frequency components, where
most energy is presumed to be concentrated on. On the other hand, the com-
parison of Haar coefficients is matching a gradually refined resolution of the two
time sequences. Another reason is the complexity consideration. The complexity
of Haar transform is O(n) whilst O(n log n) computation is required for DFT.
Both impose restriction on the length of time sequences which must be an inte-
gral power of 2. Although these computations are all involved in pre-processing
stage, the complexity of the transformation can be a concern especially when the
database is large, as happens in our case. Another advantage of using WT is the
multi-resolution representation of signals since it has the time-frequency local-
ization property. Thus, WT is able to give locations in both time and frequency.
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Therefore, wavelet representations of signals bear more information than that of
DFT, in which only frequencies are considered. While DFT extracts the lower
harmonics which represent the general shape of a time sequence, WT encodes a
coarser resolution of the original time sequence with its preceding coefficients.

Fig. 1 shows the WT is applied to the original signals in order to compute a
few coefficients for each signal in a fast way.
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Fig. 1. Original signal and its Wavelet transform approximations with three different
decomposition levels (h=4, 8, 12)

3 Support Vector Machines for Classification

The support vector machine (SVM) is a universal constructive learning proce-
dure based on the statistical learning theory [5]. The SVM maps input data into a
high-dimensional space using a non-linear function. Once input data are mapped
into the high-dimensional space, linear functions with constraints on complexity
(i.e., hyperplanes) are used to discriminate the inputs, and a quadratic opti-
mization problem must be solved to determine the parameters of these functions.
Nevertheless for high-dimensional feature spaces, the large number of parameters
makes this problem intractable. For this reason, duality theory of optimization is
used in SVM to make the estimation of parameters in the high-dimensional fea-
ture space computationally affordable. The linear approximation function corre-
sponding to the solution of the dual problem is given in the kernel representation
and it is called the optimal separating hyperplane. The solution in the kernel
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representation is written as a weighted sum of the support vectors, that is, a
subset of the training data. Let’s explain how to obtain the optimal separating
hyperplane.

A separating hyperplane is a linear function that is capable of separating
the training data without error. Consider the problem of separating the set of
training vectors belonging to two separate classes (a binary classifier),

{(x1, y1), . . . , (xn, yn)}, x ∈ IR, y ∈ {+1,−1}

with a hyperplane decision function D(x),

D(x) =< w, x >

where < ·, · > denotes inner product. In linearly separable cases, SVM constructs
a hyperplane which separates the training data without error. The hyperplane
is constructed by finding another vector w and a parameter b that minimizes
‖w‖2 and satisfies the following conditions:

yi = [< w, x > +b] ≥ 1, i = 1, . . . , n

where w is a normal weight vector to the hyperplane, |b|/‖w‖ is the perpendicular
distance from the hyperplane to the origin, and ‖w‖2 is the Euclidean norm of
w. After the determination of w and b, a given vector x can be classified by:

sign(< w, x > +b) . (1)

In non-linearly separable cases, SVM can map the input vectors into a high
dimensional feature space. By selecting a non-linear mapping a priori, SVM
constructs and optimal separating hyperplane in this higher dimensional space.
A kernel function K(x, x′) performs the non-linear mapping into feature space
[7], and the original constrains are the same. In this way, the evaluation of the
inner products among the vectors in a high-dimensional feature space is done
indirectly via the evaluation of the kernel between support vectors and vectors
in the input space (Fig. 2).

This provides a way of addressing the technical problem of evaluating inner
products in a high-dimensional feature space. Examples of kernel functions are
shown in Table 2.

Linear support vector machine is applied to this feature space and then the
decision function is given by Eq. 2:

f(x) = sign(
∑

i∈SV

αiyiK(xi, x) + b) . (2)

where the coefficients αi and b are determined by maximizing the following
Langrangian expression:

∑n
i=1 αi − 1

2

∑n
i=1

∑n
j=1 αiαjyiyjK(xi, xj) , where: αi ≥ 0 and

∑n
i=1 αiyi = 0
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A positive or negative value from Eq. 1 or Eq. 2 indicates that the vector x
belongs or not to class 1. The data samples for which the are nonzero are the
support vectors. The parameter b is given by:

b = ys

∑
i∈SV αiyiK(xs, xi)

where (xs, ys) is any one of the support vectors.

optimal
hyperplane

maximum
margin

input space
+

feature space

(a)

input space

(b)

feature space

K(x, x' )hyperplane

hyperplane

Fig. 2. The idea of SVMs: map the training data into a higher-dimensional feature
space via K, and construct a separating hyperplane with maximum range there. This
yields a nonlinear decision boundary in input space. By the use of kernel functions, it is
possible to compute the separating hyperplane without explicity carrying out the map
into the feature space. (a) Linearly separable case. (b) Non-linearly separable case

Table 2. Kernel functions extensively used

Kernel Function Description

Inner product K(x, x′) =< x, x′ >

Polynomial of degree d K(x, x′) = (< x, x′ > +1)d

Gaussian Radial Basis Function K(x, x′) = exp{−‖x − x′‖2/2σ2}
Exponential Gaussian Radial Basis Function K(x, x′) = exp{−

√
‖x − x′‖2/2σ2}

4 Performance Evaluation

Some preliminary results of our pattern classification approach based on wavelets
and SVM are presented in this Section. We have focused the attention in showing
the method validity instead of looking for a specific application. Our proof was
based on classifying and recognizing temporal evolution signals from the TJ-II
database. It is accomplished in a two-step process. A first step provides signal
conditioning (Fig. 3), to ensure the same sampling period and number of samples.

This requirement is a consequence of the fact that signals could have been col-
lected with different acquisition parameters. A second step is devoted to perform,
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Fig. 3. Signal conditioning data flow

firstly, the learning process with SVM and some of the pre-processed data. Sec-
ondly, classification tasks are carried out. All processes have been programmed
from the MATLAB software package. In order to evaluate the approach, two ex-
periments have been carried out to classify signals stored in the TJ-II database.
These signals belong to one of the classes shown in Table 3.

Table 3. Classes of signals of the TJ-II database

Classes Description

BOL5 Bolometer signal
ECE7 Electron ciclotron emission
RX306 Soft x-ray
ACTON275 Espectroscopic signal (CV)
HALFAC3 Hα
Densidad2 Line averaged electron density

In the first stage of our approach, the signals are preprocessed in both of our
experiments by Haar transform (with a decomposition level of 8) to reduce the
dimensionality of the problem. In the second stage, the test signals are classified
using SVM.

The method applied is one versus the rest, that allows to get multi-class clas-
sifiers. For that reason, we construct a set of binary classifiers as it is explained
in Section III. Each classifier is trained to separate one class from the rest, and
to combine them by doing the multi-class classification according to the maxi-
mal output before applying the sign function (Eq. 1). Next, two experiments are
shown to demonstrate the viability of the proposed approach.

In the first experiment, 4 classes have been considered: ECE7, BOL5, RX306,
and Densidad2. The training set is composed by 40 signals and the test set by
32 signals obtained from the TJ-II database.

The Fig. 4 displays the positive support vectors for each class using a linear
kernel, the training signal corresponding to the original signal in TJ-II, and
the wavelet approach which is the signal resampled to 16384 samples after the
wavelet transform.
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Fig. 4. Positive support vector for every class in the experiment 1

97%

100%

3%

0%

0%

0%

Hits

Misses

Non-Classifiables

Linear
kernel

Radial basis
function kernel

( σ = 100 )

Hits

Misses

Non-Classifiables

Fig. 5. Results of the experiment 1

The percentage of hits, misses, and non-classifiable signals are illustrated in
Fig. 5.

In a second experiment, the training and test sets are composed by 60 and 48
signals and the number of classes was 6, respectively. Fig. 6 shows the results.
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5 Conclusions

In this paper, we present a new approach for the classification of plasma exper-
iments signals. The method proposed here contains two processing stages, pre-
processing of the original signals by Wavelet Transform (WT) and multi-class
classification by Support Vector Machines (SVM). In the first stage, wavelet
transformations are applied to signals to reduce the number of dimensions of
the feature vectors. After that, a SVM-based multi-class classifier is constructed
using the preprocessed signals as input space.

From observation of several experiments, our WT+SVM method is very vi-
able and efficient time, and the results seem promising. However, we have further
work to do. We have to finish the development of a Matlab toolbox for WT+SVM
processing and to include new relevant features in the SVM inputs to improve
the technique, even developing new kernel functions. We have also to make a
better preprocessing of the input signals and to study the performance of other
generic and self-custom kernels.
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Abstract. It has previously been suggested that the visual cortex per-
forms a data analysis similar to independent component analysis (ICA).
Following this idea we show that an incomplete ICA, applied after fil-
tering, can be used to detect objects in natural scenes. Based on this
we show that an incomplete ICA can be used to efficiently cluster inde-
pendent components. We further apply this algorithm to toy data and a
real-world fMRI data example and show that this approach to clustering
offers a wide variety of applications.

1 Introduction

Clustering of data seems to occur very naturally during data processing in the
human brain. We are used to look at our surrounding and perceive things there
as “objects” without further thinking why perception actually performs some
kind of clustering: all what we can see of one object is clustered to form the
image of that object, e.g. all we can see of a chair is clustered to form the image
of the chair in our minds.

At the same time the problem of finding data samples which belong together
in huge data spaces is an old problem in data analysis. This is especially true
with applications of independent component analysis (ICA) in brain research.
i.e. to functional magnetic resonance imaging (fMRI) (see [1] for a recent review).
While ICA has the power to detect activity in the brain which other methods
fail to notice [2], the amount of data any researcher has to analyze manually is
a formidable task and forms a severe problem.

Bell et al [3] showed that the filters which are produced by analyzing nat-
ural scenes with ICA are similar to filters which are found in the visual cortex
of animals. This leads to the idea that the visual cortex indeed applies some
kind of ICA to learn these filters. But what happens if another ICA is applied
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to the outputs, i.e. after filtering of natural scenes? In this article we concen-
trate on this question and show that an incomplete ICA will automatically per-
form clustering based on the appearance of the independent components in the
mixtures.

2 Theory

In this section we will show that clustering with ICA is related to dimension
reduction of the data space. Based on this idea we develop a clustering algorithm.

2.1 Incomplete Independent Component Analysis

ICA can be used to solve the “blind source separation” (BSS) problem. It tries
to separate a mixture of originally statistically independent components based
on higher order statistical properties of these components:

Let s1(t), . . . , s(t) be m independent signals with unit variance for simplicity,
represented by a vector s(t) = (s1(t), . . . , sm(t))T , where T denotes the trans-
pose. Let the mixing matrix A generate n linear mixtures x(t) = (x1(t), . . . ,
xn(t))T from these source signals according to:

x(t) = As(t) (1)

(Note that each column of the mixing matrix A represents the contribution of
one source to each mixture.) Assume that only the mixtures x(t) can be observed.
Then ICA is the task to recover the original sources s(t) along with the mixing
matrix A. For the complete case n = m many algorithms exist to tackle this
problem, e.g. Infomax (based on entropy maximization [4]) and FastICA (based
on negentropy using fix-point iteration [5]), just to mention some of the most
popular ones. The other cases like the more difficult overcomplete (n < m) and
the more trivial undercomplete (n > m) case have also been widely studied in
the literature, see e.g. [6, 7].

In this paper we concentrate on the incomplete case: What will happen if we
try to extract deliberately fewer sources than can be extracted from the mixtures
x(t)? We do not want to extract a subset of all independent sources, instead
we try to cluster all sources into fewer components than could be extracted in
principle. In this way the incomplete case differs from the overcomplete case.

At the same time the incomplete case obviously makes a dimension reduction
of the data set necessary. A common way to keep the loss of information minimal
is to apply a principal component analysis to the mixtures x(t) and to do the
dimension reduction based on the eigenvectors ei corresponding to the smallest
eigenvalues λi of the data covariance matrix C [8]. This is also a basic pre-
processing step (“whitening”) for many ICA algorithms (and can be done quite
efficiently with neural networks), as it reduces the degrees of freedom in the
space of the solutions by removing all second order correlations of the data and
setting the variances to unity:

x̃ = EΛ− 1
2 ET x, (2)
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where E is the orthogonal matrix of eigenvectors of the covariance matrix of
x, with C(x) = E((x − E(x))(x − E(x))T ), and Λ the diagonal matrix of its
eigenvalues.

This dimension reduction will cluster the independent components (IC) si(t)
based on their presence in the mixing matrix A, as the covariance matrix of x
depends on A: [9]

E(xxT ) = E(AssT AT ) (3)
= AE(ssT )AT (4)
= AAT (5)

If two columns in the mixing matrix A are almost identical up to a linear
factor, i.e. are linearly dependent, this means that the two sources represented
by those columns are almost identically represented (up to a linear factor) in
the mixtures. A matrix with two linearly dependent columns does not have full
rank, hence will have at least one zero eigenvalue due to its restricted dimension.

This also holds for the transpose AT of the matrix A as the transpose has
the same dimensionality as the original matrix, as well as for the product of both
matrixes AAT .

Setting this close-to-zero eigenvalue to zero in the course of a dimension
reduction will thus combine two almost identical columns of A to a single one.
This means that components that appear to be similar to each other in most of
the mixtures will be clustered together into new components by the dimension
reduction with PCA.

Another possibility is to use only parts of the original data set. This also will
cause the ICA to form clusters of independent components with similar columns
in the mixing matrix in the reduced data set.

2.2 Clustering with Incomplete ICA

For ICA the literature on clustering so far is based on the comparison of the
independent components themselves. To name just a few published algorithms
for this problem: the tree-dependent ICA [10] and the topographic ICA [11],
which have also been applied to fMRI data [12].

As shown in the section before, clustering based on the columns of the mixing
matrix comes naturally to incomplete ICA. However, normally ICA is applied
to find the basic independent components of the original data. So a second
step is necessary to get from the clusters to their separate parts: The idea is
to compare different ICA runs with a different level of dimension reduction
applied beforehand. First a complete ICA is performed extracting the maximal
number of independent components (ICs) from the data set. In a second run,
an incomplete ICA is performed on a reduced data set which resulted from a
dimension reduction during PCA pre-processing.

The independent components of the complete ICA without dimension reduc-
tion are then compared with the IC of several incomplete ICA runs. Independent
components which form part of the components of the incomplete ICA are then
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grouped into the cluster which is represented by the IC of the incomplete ICA
at hand. Hence the ICs of any incomplete ICA form sort of prototype ICs of
the clusters formed by ICs from the complete set. This leads immediately to an
algorithm for clustering by incomplete ICA:

1. apply a standard ICA to the data set without dimension reduction: ICA1
2. apply a standard ICA to the data set with dimension reduction: ICA2
3. find the independent components in ICA1 that are similar to some forms of

components in ICA2 for a further analysis of the independent components.

3 Examples

In this section we demonstrate that incomplete ICA will cluster the response of
a filter to a set of images in a way that the results can be used to detect objects.
Then we demonstrate with a toy example that the clustering with incomplete
ICA outperforms a standard k-means clustering algorithm. Finally we apply the
presented clustering algorithm to a real world fMRI example.

3.1 Object Detection

Incomplete ICA can be used to detect objects in small movies: while each ob-
ject typically consists of many separate independent components, these ICs will
appear together in the result of the incomplete ICA because they also appear
together in the mixtures. To demonstrate this we took 4 pictures of a palm tree
in slightly different angles. This mimics the view of a passing observer (figure
1). Then a filter for vertical edges was applied (see figure 2 on the left side for
an example). After this an incomplete ICA was used to separate the resulting
filter responses of the four images.

Fig. 1. The four black and white images that were used for the object detection test.
each time the palm tree is in the centre of the image, but the angle of the view differs
slightly

As written before we can expect that this ICA will show us at least one IC
with the highest values for that part of the image that represents an object
within the filter responses in the image. At the same time this IC should have
the overall highest values in his column of the mixing matrix as it should be the
IC that consistently appears in the images.
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Fig. 2. Left side: The filter response for one of the images. As expected the filter for
vertical edges will have the highest results for the trunks of the trees and the buildings
in the background. Right side: The component with the highest value in the incomplete
ICA. The trunk of the palm tree was detected as object

Figure 2 shows on the right side the IC that showed the highest values in the
columns of the mixing matrix. The trunk of the palm tree in the middle here
clearly shows the highest values and thus can be marked as “object”.

Combined with the results of other filters that are able to detect other parts
of objects, the clustering feature of an incomplete ICA could be used to build a
sophisticated object detection system.

3.2 Toy Data

To test the quality of the clustering we choose to build a toy data set. 64 sources
were created where each of the sources represents a circle in a square lattice of
100 × 100 lattice points. The mixing matrix was initialized randomly and then
modified so that two sets of circles – one representing the letter “A” in the
upper left corner, the other representing the letter “C” in the lower right corner
– appeared together in the mixtures by setting the columns of these sets to the
same values, with random differences of up to 5%. Figure 3 shows one of these
mixtures on the left side.

K-Means Analysis. A standard k-means clustering analysis was performed to
cluster the columns of the mixing matrix A. Figure 3 shows on the right the
mean overall error of 100 k-means analysis runs for 3 up to 63 clusters. It can
be seen that in this case this statistic gives no hint on the number of clusters in
the data set.

In figure 4 the mean number of wrong circles is plotted, on the left side for
the A-class circles, on the right side for the C-class circles. While the k-means
analysis obviously clusters all the A-class circles in one cluster up to an overall
number of searched-for clusters of 10, it fails to do so with an average error of
almost 1 not-A circle. For more than 20 clusters this error disappears, but at the
same time A-class circles appear in other clusters. The results for the C-class
circles are practically the same as can be seen on the right side of the figure.



A New Approach to Clustering and Object Detection 563

x (pixel)

y 
(p

ix
el

)

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

clusters

m
ea

n 
er

ro
r

Fig. 3. The figure on the left shows one mixture of the toy data set. Note the almost
undetectable A-set in the upper left corner and the C-set in the lower right corner. The
figure on the right shows the overall mean error against the number of clusters that
were used for the k-means analysis
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Fig. 4. In the left figure the number of wrong circles in the A-cluster (dots) and the
number of A-circles in the wrong cluster (crosses) are plotted against the number of
clusters. The right figure shows the same for the C-Cluster. It can be seen that within
this data set the k-means analysis fails to cluster the right circles without any error,
independent of the number of clusters

Incomplete ICA. For this analysis the FastICA algorithm [5] was used. 3 up
to 63 components (data reduction via a preceding PCA or via a random pick of
the mixtures from the original data) were estimated in 100 runs for each analysis.
As the ICA first had to de-mix the mixture of circles, a simple de-noising of the
resulting components was necessary (every pixel with a level of 70% was counted
as activated).

On the left side of figure 5 the plot for the number of falsely classified cir-
cles shows that the algorithm using PCA for dimension reduction worked well
for 3 up to 31 used components, thus being remarkably stable. For more than
52 components the ICA separated the single circles of the A-Cluster, as can be
expected due to the setting of the data. The incomplete ICA also was able to
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Fig. 5. In the plot on the left side the number of wrong circles in the A-cluster (dots)
and the number of A-circles in the wrong cluster (crosses) are plotted against the
number of components for clustering with the incomplete ICA using the PCA dimension
reduction. The right side shows the result for the dimension reduction by randomly
picking mixtures of the data set

find the right column of the mixing matrix for the class-A circles for all used
components in every run.

The right side of figure 5 shows the results for the algorithm using a random
subset of the original data set for dimension reduction. Obviously the algorithm
here had problems in clustering the correct circles together. Also the ICA here
was not always successful in finding the correct column of the mixing matrix for
the A-class circles. It seems that the simple dimension reduction via the random
picking of only some of the original mixtures erases too much of the information,
so that the algorithm can not work properly anymore.

3.3 fMRI Data

We also applied the clustering algorithm to functional magnetic resonance data
(fMRI) of a modified Wisconsin Card Sorting Test of one subject. This data set,
consisting of 467 scans, was created at the institute for medicine at the Research
Center Jülich, Germany. It has been preprocessed to remove motion artifacts,
normalized and was filtered with a gaussian filter to increase the signal to noise
ratio. Spatial ICA was used for the analysis so that the independent components
correspond to activation maps and the columns of the mixing matrix correspond
to the time courses of this activation. [13].

For the clustering with incomplete ICA the data was first reduced via PCA
to 400 dimensions, so that almost no information was lost. Then the (spatial)
ICA1 was calculated using the extended Infomax algorithm [4]. After this step
the (spatial) ICA2 was calculated, with the dimension of the data reduced to 20.
The 20 independent components of ICA2 were manually compared to a cluster
of activations found in the data set using a general linear model analysis. Figure
6 (left) shows the component that was found to correspond to this cluster. Then
all independent components of ICA1 were searched automatically for similar
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Fig. 6. Left side: This cluster of activations was found in ICA2. The positions of activity
match the activations found in a general linear model analysis of the same data. Right
side: comparison of the time course of the cluster from ICA2 (solid line) with the sum
of the time courses of its components from ICA1 (circles)

activations. The time courses of these components differ in detail, while their
sum closely follows the time course of the cluster component of ICA2 (figure 6,
right side).

4 Conclusion

Based on the idea that an incomplete ICA will cluster independent components
based on their distribution in the mixtures, thus allowing a basic form of object
detection, we were able to show that this feature of ICA can be used to develop a
promising new kind of clustering algorithm. We also showed that this algorithm
was able to out-perform k-means in a toy example and can successfully be applied
to a real world fMRI data problem.
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Research Center Jülich for the fMRI data set. This work was supported by the
German ministry of education and research BMBF (project ModKog) and by
the project TEC 2004-0696 (SESIBONN).

References

1. V.D. Calhoun, T. Adali, L.K. Hansen, J. Larsen, J.J. Pekar, “ICA of Functional
MRI Data: An Overview”, in Fourth International Symposium on Independent
Component Analysis and Blind Source Separation, pp. 281–288, 2003

2. I.R. Keck, F.J. Theis, P. Gruber, E.W. Lang, K. Specht, C.G. Puntonet, “3D
Spatial Analysis of fMRI Data on a Word Perception Task”, in Springer Lecture
Notes LNCS 3195, Proceedings of the ICA 2004 Granada, pp. 977–984, 2004.



566 I.R. Keck et al.

3. A.J. Bell, T.J. Sejnowski, “The ‘Independent Components’ of Natural Scenes are
Edge Filters”, Vision Research 37(23), pp. 3327-3338, 1997.

4. A.J. Bell, T.J. Sejnowski, “An information-maximisation approach to blind sepa-
ration and blind deconvolution”, Neural Computation, 7(6), pp. 1129–1159 (1995).

5. A. Hyvärinnen, “Fast and Robust Fixed-Point Algorithms for Independent Com-
ponent Analysis”, IEEE Transactions on Neural Networks 10(3), pp. 626–634,
1999.

6. S. Amari, “Natural Gradient Learning for Over- and Under-Complete Bases in
ICA”, Neural Computation 11, pp. 1875–1883 (1999).

7. F.J. Theis, A. Jung, C.G. Puntonet, E.W. Lang, “Linear geometric ICA: Funda-
mentals and algorithms”, Neural Computation, 15, pp. 419–439, 2003

8. A. Hyvärinnen, E. Oja, “Independent Component Analysis: Algorithms and Ap-
plications”, Neural Networks, 13(4-5), pp. 411–430, 2000.

9. A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, E. Moulines, “A Blind Source
Separation Technique Using Second-Order Statistics”, IEEE Transactions on Sig-
nal Processing, 45(2), pp. 434–444, 1997

10. F.R. Bach, M.I. Jordan, “Beyond independent components: Trees and Clusters”,
Journal of Machine Learning Research 4, pp. 1205–1233, 2003.

11. A. Hyvärinnen, P. Hoyer, “Topographic independent component analysis”, Neural
Computation 13, pp. 1527–1558, 2001.
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Abstract. A robust and effective voice activity detection (VAD) al-
gorithm is proposed for improving speech recognition performance in
noisy environments. The approach is based on filtering the input chan-
nel to avoid high energy noisy components and then the determina-
tion of the speech/non-speech bispectra by means of third order auto-
cumulants. This algorithm differs from many others in the way the de-
cision rule is formulated (detection tests) and the domain used in this
approach. Clear improvements in speech/non-speech discrimination ac-
curacy demonstrate the effectiveness of the proposed VAD. It is shown
that application of statistical detection test leads to a better separation
of the speech and noise distributions, thus allowing a more effective dis-
crimination and a tradeoff between complexity and performance. The al-
gorithm also incorporates a previous noise reduction block improving the
accuracy in detecting speech and non-speech. The experimental analysis
carried out on the AURORA databases and tasks provides an extensive
performance evaluation together with an exhaustive comparison to the
standard VADs such as ITU G.729, GSM AMR and ETSI AFE for dis-
tributed speech recognition (DSR), and other recently reported VADs.

1 Introduction

Speech/non-speech detection is an unsolved problem in speech processing and
affects numerous applications including robust speech recognition [1], discon-
tinuous transmission [2, 3], real-time speech transmission on the Internet [4] or
combined noise reduction and echo cancellation schemes in the context of tele-
phony [5]. The speech/non-speech classification task is not as trivial as it ap-
pears, and most of the VAD algorithms fail when the level of background noise
increases. During the last decade, numerous researchers have developed different
strategies for detecting speech on a noisy signal [6, 7] and have evaluated the
influence of the VAD effectiveness on the performance of speech processing sys-
tems [8]. Most of them have focussed on the development of robust algorithms
with special attention on the derivation and study of noise robust features and
decision rules [9, 10, 11]. The different approaches include those based on energy
thresholds [9], pitch detection [12], spectrum analysis [11], zero-crossing rate [3],

J. Mira and J.R. Álvarez (Eds.): IWINAC 2005, LNCS 3562, pp. 567–576, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



568 J.M. Górriz et al.

periodicity measure [13], higher order statistics in the LPC residual domain [14]
or combinations of different features [3, 2].

This paper explores a new alternative towards improving speech detection
robustness in adverse environments and the performance of speech recognition
systems. The proposed VAD proposes a noise reduction block that precedes the
VAD, and uses Bispectra of third order cumulants to formulate a robust decision
rule. The rest of the paper is organized as follows. Section II reviews the theo-
retical background on Bispectra analysis and shows the proposed signal model.
Section III analyzes the motivations for the proposed algorithm by comparing
the speech/non-speech distributions for our decision function based on bispec-
tra and when noise reduction is optionally applied. Section IV describes the
experimental framework considered for the evaluation of the proposed endpoint
detection algorithm. Finally, section V summarizes the conclusions of this work.

2 Model Assumptions

Let {x(t)} denote the discrete time measurements at the sensor. Consider the
set of stochastic variables yk, k = 0,±1 . . .±M obtained from the shift of the
input signal {x(t)}:

yk(t) = x(t + k · τ) (1)

where k · τ is the differential delay (or advance) between the samples. This
provides a new set of 2 · m + 1 variables by selecting n = 1 . . . N samples of the
input signal. It can be represented using the associated Toeplitz matrix:

Tx(t0) =




y−M (t0) . . . y−m(tN )
y−M+1(t0) . . . y−M+1(tN )

. . . . . . . . .
yM (t0) . . . yM (tN )


 (2)

Using this model the speech-non speech detection can be described by using two
essential hypothesis(re-ordering indexes):

Ho =




y0 = n0

y±1 = n±1

. . .
y±M = n±M


 (3)

H1 =




y0 = s0 + n0

y±1 = s±1 + n±1

. . .
y±M = s±M + n±M


 (4)

where sk’s/nk’s are the speech (see section /refsec:speech) /non-speech (any
kind of additive background noise i.e. gaussian) signals, related themselves with
some differential parameter. All the process involved are assumed to be jointly



Bispectra Analysis-Based VAD for Robust Speech Recognition 569

stationary and zero-mean. Consider the third order cumulant function Cykyl

defined as:
Cykyl

≡ E[y0ykyl] (5)

and the two-dimensional discrete Fourier transform (DFT) of Cykyl
, the bispec-

trum function:

Cykyl
(ω1, ω2) =

∞∑
k=−∞

∞∑
l=−∞

Cykyl
· exp(−j(ω1k + ω2l))) (6)

2.1 A Model for Speech / Non Speech

The voice detection is achieved applying biespectrum function to the set of new
variables detailed in the previous section. Then the essential difference between
speech (sk) and non-speech (nk) (i.e. noise) will be modelled in terms of the value
of the spectral frequency coefficients. We also assume that the noise sequences
(nk) are statistically independent of sk with vanishing biespectra. Of course the
third order cumulant sequences of all process satisfy the summability conditions
retailed in [15].

The sequence of cumulants of the voice speech is modelled as a sum of co-
herent sine waves:

Cykyl
=

K∑
n,m=1

anmcos[knω1
0 + lmω2

0 ] (7)

where anm is amplitude, K × K is the number of sinusoids and ω is the funda-
mental frequency in each dimension. It follows from [14] that amn is related to
the energy of the signal Es = E{s2}. The VAD proposed in the later reference
only works with the coefficients in the sequence of cumulants and is more restric-
tive in the model of voice speech. Thus the Bispectra associated to this sequence
is the DTF of equation 7 which consist in a set of Dirac´s deltas in each excita-
tion frequency nω1

0 ,mω2
0 . Our algorithm will detect any high frequency peak on

this domain matching with voice speech frames, that is under the above assump-
tions and hypotheses, it follows that on H0, Cykyl

(ω1, ω2) ≡ Cnknl
(ω1, ω2) � 0

and on H1 Cykyl
(ω1, ω2) ≡ Csksl

(ω1, ω2) �= 0. Since sk(t) = s(t + k · τ) where
k = 0,±1 . . . ± M , we get:

Csksl
(ω1, ω2) = F{E[s(t + k · τ)s(t + l · τ)s(t)]} (8)

The estimation of the bispectrum is deep discussed in [16] and many others,
where conditions for consistency are given. The estimate is said to be (asymp-
totically) consistent if the squared deviation goes to zero, as the number of
samples tends to infinity.

2.2 Detection Tests for Voice Activity

The decision of our algorithm is based on statistical tests including the Gen-
eralized Likelihood ratio tests (GLRT) [17] and the Central χ2-distributed test
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statistic under HO [18]. We will call them GLRT and χ2 tests. The tests are
based on some asymptotic distributions and computer simulations in [19] show
that the χ2 tests require larger data sets to achieve a consistent theoretical
asymptotic distribution.

GRLT: Consider the complete domain in biespectrum frequency for 0 ≤ ωn,m ≤
2π and define P uniformly distributed points in this grid (m,n), called coarse
grid. Define the fine grid of L points as the L nearest frequency pairs to coarse
grid points. We have that 2M + 1 = P · L. If we reorder the components of
the set of L Bispectrum estimates Ĉ(nl,ml) where l = 1, . . . , L, on the fine grid
around the bifrequency pair into a L vector βml where m = 1, . . . P indexes the
coarse grid [17] and define P-vectors φi(β1i, . . . , βPi), i = 1, . . . L; the generalized
likelihood ratio test for the above discussed hypothesis testing problem:

H0 : µ = µn against H1 : η ≡ µT σ−1µ > µT
nσ−1

n µn (9)

where µ = 1/L
∑L

i=1 φi and σ = 1/L
∑L

i=1(φi − µ)(φi − µ)T are the maximum
likelihood gaussian estimates of vector C = (Cykyl

(m1, n1) . . . Cykyl
(mP , nP )) ,

leads to the activity voice detection if:

η > η0 (10)

where η0 is a constant determined by a certain significance level, i.e. the proba-
bility of false alarm. Note that:

1. We have supposed independence between signal sk and additive noise nk
1

thus:
µ = µn + µs; σ = σn + σs (11)

2. The right hand side of H1 hypothesis must be estimated in each frame (it’s a-
priori unknown). In our algorithm the approach is based on the information
in the previous non-speech detected intervals.

The statistic considered here η is distributed as a central F2P,2(L−P ) under the
null hypothesis. Therefore a Neyman-Pearson test can be designed for a signifi-
cance level α.

χ2 tests: In this section we consider the χ2
2L distributed test statistic[18]:

η =
∑
m,n

2M−1|Γykyl
(m,n)|2 (12)

where Γykyl
(m,n) = |Ĉykyl

(n,m)|
[Sy0 (m)Syk

(n)Syl(m+n)]0.5 which is asymptotically distributed

as χ2
2L(0) where L denotes the number of points in interior of the principal

1 Observe that now we do not assume that nk k = 0 . . . ± M are gaussian
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domain. The Neyman-Pearson test for a significant level (false-alarm probability)
α turns out to be:

H1 if η > ηα (13)

where ηα is determined from tables of the central χ2 distribution. Note that the
denominator of Γykyl

(m,n) is unknown a priori so they must be estimated as
the bispectrum function (that is calculate Ĉykyl

(n,m)). This requires a larger
data set as we mentioned above in this section.

2.3 Noise Reduction Block

Almost any VAD can be improved just placing a noise reduction block in the
data channel before it. The noise reduction block for high energy noisy peaks,
consists of four stages and was first developed in [20]:

i) Spectrum smoothing. The power spectrum is averaged over two consecutive
frames and two adjacent spectral bands.

ii) Noise estimation. The noise spectrum Ne(m, l) is updated by means of a
1st order IIR filter on the smoothed spectrum Xs(m, l), that is, Ne(m, l) =
λNe(m, l − 1) + (1 − λ)Xs(m, l) where λ = 0.99 and m= 0, 1, ..., NFFT/2.

iii) Wiener Filter (WF) design. First, the clean signal S(m, l) is estimated by
combining smoothing and spectral subtraction and then, the WF H(m, l) is
designed. The filter H(m, l) is smoothed in order to eliminate rapid changes
between neighbor frequencies that may often cause musical noise. Thus, the
variance of the residual noise is reduced and consequently, the robustness
when detecting non-speech is enhanced. The smoothing is performed by
truncating the impulse response of the corresponding causal FIR filter to
17 taps using a Hanning window. With this operation performed in the time
domain, the frequency response of the Wiener filter is smoothed and the
performance of the VAD is improved.

iv) Frequency domain filtering. The smoothed filter Hs is applied in the fre-
quency domain to obtain the de-noised spectrum Y (m, l) = Hs(m, l)X(m, l).

Fig. 1 shows the operation of the proposed VAD on an utterance of the Span-
ish SpeechDat-Car (SDC) database [21]. The phonetic transcription is: [“siete”,
“θinko”, “dos”, “uno”, “otSo”, “seis”]. Fig 1(b) shows the value of η versus
time. Observe how assuming η0 the initial value of the magnitude η over the
first frame (noise), we can achieve a good VAD decision. It is clearly shown how
the detection tests yield improved speech/non-speech discrimination of fricative
sounds by giving complementary information. The VAD performs an advanced
detection of beginnings and delayed detection of word endings which, in part,
makes a hang-over unnecessary. In Fig 2 we display the differences between noise
and voice in general and in figure we settle these differences in the evaluation of
η on speech and non-speech frames.

According to [20], using a noise reduction block previous to endpoint de-
tection together with a long-term measure of the noise parameters, reports im-
portant benefits for detecting speech in noise since misclassification errors are
significantly reduced.
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Fig. 1. Operation of the VAD on an utterance of Spanish SDC database. (a) Evaluation
of η and VAD Decision. (b) Evaluation of the test hypothesis on an example utterance
of the Spanish SpeechDat-Car (SDC) database [21]
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Fig. 2. Different Features allowing voice activity detection. (a) Features of Voice
Speech Signal. (b) Features of non Speech Signal
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Fig. 3. Speech/non-Speech η values for Speech-Non Speech Frames

3 Experimental Framework

Several experiments are commonly conducted to evaluate the performance of
VAD algorithms. The analysis is mainly focussed on the determination of the
error probabilities or classification errors at different SNR levels [11] vs. our VAD
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operation point, The work about the influence of the VAD decision on the per-
formance of speech processing systems [8] is on the way. Subjective performance
tests have also been considered for the evaluation of VADs working in combi-
nation with speech coders [22]. The experimental framework and the objective
performance tests conducted to evaluate the proposed algorithm are partially
showed for space reasons (we only show the results on AURORA-3 database)in
this section.

The ROC curves are frequently used to completely describe the VAD er-
ror rate. The AURORA subset of the original Spanish SpeechDat-Car (SDC)
database [21] was used in this analysis. This database contains 4914 record-
ings using close-talking and distant microphones from more than 160 speakers.
The files are categorized into three noisy conditions: quiet, low noisy and highly
noisy conditions, which represent different driving conditions with average SNR
values between 25dB, and 5dB. The non-speech hit rate (HR0) and the false
alarm rate (FAR0= 100-HR1) were determined in each noise condition being
the actual speech frames and actual speech pauses determined by hand-labelling
the database on the close-talking microphone. These noisy signals represent the
most probable application scenarios for telecommunication terminals (suburban
train, babble, car, exhibition hall, restaurant, street, airport and train station).

In table 1 shows the averaged ROC curves of the proposed VAD (BiSpectra
based-VAD) and other frequently referred algorithms [9, 10, 11, 6] for recordings
from the distant microphone in quiet, low and high noisy conditions. The work-
ing points of the G.729, AMR and AFE VADs are also included. The results show
improvements in detection accuracy over standard VADs and over a representa-
tive set VAD algorithms [9, 10, 11, 6]. It can be concluded from these results that:

i) The working point of the G.729 VAD shifts to the right in the ROC space
with decreasing SNR.

ii) AMR1 works on a low false alarm rate point of the ROC space but exhibits
poor non-speech hit rate.

iii) AMR2 yields clear advantages over G.729 and AMR1 exhibiting important
reduction of the false alarm rate when compared to G.729 and increased
non-speech hit rate over AMR1.

iv) The VAD used in the AFE for noise estimation yields good non-speech detec-
tion accuracy but works on a high false alarm rate point on the ROC space.

Table 1. Average speech/non-speech hit rates for SNRs between 25dB and 5dB. Com-
parison of the proposed BSVAD to standard and recently reported VADs

(%) G.729 AMR1 AMR2 AFE (WF) AFE (FD)

HR0 55.798 51.565 57.627 69.07 33.987
HR1 88.065 98.257 97.618 85.437 99.750

(%) Woo Li Marzinzik Sohn χ2/GLRT

HR0 62.17 57.03 51.21 66.200 66.520/68.048
HR1 94.53 88.323 94.273 88.614 85.192/90.536
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It suffers from rapid performance degradation when the driving conditions
get noisier. On the other hand, the VAD used in the AFE for FD has been
planned to be conservative since it is only used in the DSR standard for that
purpose. Thus, it exhibits poor non-speech detection accuracy working on a
low false alarm rate point of the ROC space.

v) The proposed VAD also works with lower false alarm rate and higher non-
speech hit rate when compared to the Sohn’s [6], Woo’s [9], Li’s [10] and
Marzinzik’s [11] algorithms in poor SNR scenarios. The BSVAD works ro-
bustly as noise level increases.

The benefits are especially important over G.729, which is used along with
a speech codec for discontinuous transmission, and over the Li’s algorithm, that
is based on an optimum linear filter for edge detection. The proposed VAD also
improves Marzinzik’s VAD that tracks the power spectral envelopes, and the
Sohn’s VAD, that formulates the decision rule by means of a statistical likelihood
ratio test.

It is worthwhile mentioning that the experiments described above yields a first
measure of the performance of the VAD. Other measures of VAD performance
that have been reported are the clipping errors [22]. These measures provide
valuable information about the performance of the VAD and can be used for
optimizing its operation. Our analysis does not distinguish between the frames
that are being classified and assesses the hit-rates and false alarm rates for a first
performance evaluation of the proposed VAD. On the other hand, the speech
recognition experiments conducted later on the AURORA databases will be a
direct measure of the quality of the VAD and the application it was designed for.
Clipping errors are evaluated indirectly by the speech recognition system since
there is a high probability of a deletion error to occur when part of the word is
lost after frame-dropping.

These results clearly demonstrate that there is no optimal VAD for all the
applications. Each VAD is developed and optimized for specific purposes. Hence,
the evaluation has to be conducted according to the specific goal of the VAD.
Frequently, VADs avoid loosing speech periods leading to an extremely conser-
vative behavior in detecting speech pauses (for instance, the AMR1 VAD). Thus,
in order to correctly describe the VAD performance, both parameters have to
be considered.

4 Conclusions

This paper presented a new VAD for improving speech detection robustness in
noisy environments. The approach is based on higher order Spectra Analysis
employing noise reduction techniques and order statistic filters for the formu-
lation of the decision rule. The VAD performs an advanced detection of begin-
nings and delayed detection of word endings which, in part, avoids having to
include additional hangover schemes. As a result, it leads to clear improvements
in speech/non-speech discrimination especially when the SNR drops. With this
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and other innovations, the proposed algorithm outperformed G.729, AMR and
AFE standard VADs as well as recently reported approaches for endpoint de-
tection. We think that it also will improve the recognition rate when it was
considered as part of a complete speech recognition system.
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20. J. Ramı́´ýrez, J. Segura, C. Beńı´ýtez, A. delaTorre, and A. Rubio, “An effective
subband osf-based vad with noise reduction for robust speech recognition,” In press
IEEE Transactions on Speech and Audio Processing, vol. X, no. X, pp. X–X, 2004.

21. A. Moreno, L. Borge, D. Christoph, R. Gael, C. Khalid, E. Stephan, and A. Jef-
frey, “SpeechDat-Car: A Large Speech Database for Automotive Environments,”
in Proceedings of the II LREC Conference, 2000.

22. A. Benyassine, E. Shlomot, H. Su, D. Massaloux, C. Lamblin, and J. Petit, “ITUT
Recommendation G.729 Annex B: A silence compression scheme for use with G.729
optimized for V.70 digital simultaneous voice and data applications,” IEEE Com-
munications Magazine, vol. 35, no. 9, pp. 64–73, 1997.



On-line Training of Neural Networks: A Sliding Window
Approach for the Levenberg-Marquardt Algorithm

Fernando Morgado Dias1, Ana Antunes1, José Vieira2, and Alexandre Manuel Mota3
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6000 Castelo Branco, Portugal Tel: +351 272 330300

zevieira@est.ipcb.pt
3 Departamento de Electrónica e Telecomunicações,

Universidade de Aveiro, 3810 - 193 Aveiro,
Portugal, Tel: +351 234 370383

alex@det.ua.pt

Abstract. In the Neural Network universe, the Backpropagation and the
Levenberg-Marquardt are the most used algorithms, being almost consensual that
the latter is the most effective one. Unfortunately for this algorithm it has not been
possible to develop a true iterative version for on-line use due to the necessity to
implement the Hessian matrix and compute the trust region. To overcome the
difficulties in implementing the iterative version, a batch sliding window with
Early Stopping is proposed, which uses a hybrid Direct/Specialized evaluation
procedure. The final solution is tested with a real system.

1 Introduction

Many algorithms have been used in the field of Artificial Neural Networks (ANNs).
Among these the Backpropagation and the Levenberg-Marquardt are the most used,
being almost consensual that the latter is the most effective one. Its use has though
been mostly restricted to the off-line training because of the difficulties to implement a
true iterative version. The on-line versions are very useful for identifying time varying
systems and to build black box approaches for identification. These difficulties to
implement an iterative version come from computing the derivatives for the Hessian
matrix, inverting this matrix and computing the region for which the approximation
contained in the calculation of the Hessian matrix is valid (the trust region). In the
present work a different approach is suggested: the use of the Levenberg-Marquardt
algorithm on-line in a batch version with sliding window and Early Stopping, allowing
the use of the Levenberg-Marquardt algorithm as in the off-line approaches. The
implementation also uses a hybrid Direct/Specialized evaluation procedure and the final
solution is tested with a real system composed of a reduced scale prototype kiln.
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2 Review of the Algorithm

In this section, a short review of the Levenberg-Marquardt algorithm is done to enable
easier perception of the problems found in the on-line implementation. Equation 1
shows the updating rule for the algorithm where xk is the current iteration, v(x) is the
error between the output obtained and the pretended output, J(xk) is the Jacobian of the
system at iteration k and 2.JT (xk).J(xk) + µkI is the Hessian matrix approximation
used where I is the identity matrix and µk is a value (that can be changed in each
iteration) that makes the approximation positive definite and therefore allowing its
inversion.

�xk = −
[
2.JT (xk).J(xk) + µkI

]−1
.2.JT (xk).v(xk) (1)

The Levenberg-Marquardt algorithm is due to the independent work of both authors in
[1] and [2].

The parameter µk is the key of the algorithm since it is responsible for stability
(when assuring that the Hessian can be inverted) and speed of convergence. It is
therefore worth to take a closer look on how to calculate this value.

The modification of the Hessian matrix will only be valid in a neighbourhood of the
current iteration. This corresponds to search for the correct update of the next iteration
xk+1 but restricting this search to |x − xk| � δk.

There is a relationship between δk and µk since raising µk makes the neighbourhood
δk diminish [3]. As an exact expression to relate these two parameters is not available,
many solutions have been developed.

The one used in the present work was proposed by Fletcher [3] and uses the
following expression:

rk =
VN (xk) − VN (xk + pk)
VN (xk) − Lk(xk + pk)

(2)

to obtain a measure of the quality of the approximation. Here VN is the function to be
minimized, Lk is the estimate of that value calculated from the Taylor series of second
order and pk is the search direction, in the present situation, the search direction given
by the Levenberg-Marquardt algorithm.

The value of rk is used in the determination of µk according to the following
algorithm:

1-Choose the initial values of x0 e µ0.
2-Calculate the search direction pk.
3-If rk > 0.75 then set µk = µk/2.
4-If rk < 0.25 then set µk = 2.µk.
5-If VN (xk + pk) < VN (xk) then the new iteration is accepted.
6-If the stopping condition for the training is not met, return to step 2.

3 On-line Version

As pointed out before, the difficulties come from computing the derivatives for the
Hessian matrix, inverting this matrix and computing the trust region, the region for
which the approximation contained in the calculation of the Hessian matrix is valid.
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In the literature, some attempts to build on-line versions can be found, namely the
work done by Ngia [4] developing a modified iterative Levenberg-Marquardt algorithm
which includes the calculation of the trust region and the work in [5] which implements
a Levenberg-Marquardt algorithm in sliding window mode for Radial Basis Functions.

3.1 A Double Sliding Window Approach with Early Stopping

The current work is an evolution of the one presented in [6] where an on-line version
of the Levenberg-Marquardt algorithm was implemented using a sliding window with
Early Stopping and static test set. In the present work two sliding windows are used, one
for the training set and another for the evaluation set with all the data being collected
on-line. As in the previous work, the Early Stopping technique [7], [8] is used to
avoid the overfitting problem because it is almost mandatory to employ a technique
to avoid overtraining when dealing with systems that are subject to noise. The Early
Stopping technique was chosen over other techniques that could have been used (like
Regularization and Prunning techniques) because it has less computational burden.

The use of two sliding windows will introduce some difficulties since both data
sets will be changing during training and evaluation phases. For these two windows it is
necessary to decide their relative position. In order to be able to perform Early Stopping
in a valid way, it was decided to place the windows in a way that the new samples will
go into the test window and the samples that are removed from the test set will go in to
the training set according to figure 1.

Test windowTraining window

Most recent samples

Sample displacement direction

Fig. 1. Relative position of the training and test sets

If the inverse relative position of the two windows was used, the samples would be
part of the test set after they have been part of the training set and so the objective of
evaluating the generalization ability would be somehow faked.

In order to save some of the time necessary to collect all the samples needed to
fill both the test and training window, the training is started after some data has been
collected but before the windows are both filled. The test window always keeps the
same number of samples, while the training window is growing in the initial stage.
The choice of maintaining the test window always with the same number of points was
taken with the objectives of maintaining this window as stable as possible (since it is
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responsible for producing the numerical evaluation of the models) and assuming the use
of a minimal test window that should not be shortened.

The windows may not change in each training iteration since all the time between
samplings is used for training which may permit several training epochs before a new
sample is collected. But each time the composition of the windows is changed, the test
and training errors will probably be subjected to an immediate change that might be
interpreted as an overtraining situation. The Early Stopping technique is here used in
conjunction with a measure of the best model that is retained for control. Each time
there is a change in the windows, the values of the best models (direct and inverse)
must be re-evaluated because the previous ones, obtained over a different test set, are
no longer valid for a direct comparison.

Start

No

reached the
preset amount

of points?

No

Yes

No
Yes

Best
model
yet?

Collecting
Information

Training
and

Evaluation

Save
Model

Overtraining
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No
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Fig. 2. Block diagram for the identification of a direct model on-line
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The procedure used for the identification of the direct model on-line is represented
in figure 2.

As was already explained, training starts when a predefined amount of points have
been collected. After each epoch the ANN is evaluated with a test set. The value of the
Mean Square Error (MSE) obtained is used to perform Early Stopping and to retain the
best models.

The conditions for overtraining and the maximum number of epochs are then
verified. If they are true, the Flag, which indicates that the threshold of quality has been
reached, will also be verified and if it is on, the training of the inverse model starts,
otherwise the models will be reset since new models need to be prepared. Resetting
here means that the model’s weights are replaced by random values between -1 and 1
as in used in the initial models.

After testing the conditions for overtraining and the maximum number of epochs, if
they are both false, the predefined threshold of quality will also be tested and if it has
been reached the variable Flag will be set to on. In either case the remaining time of the
sampling period is tested to decide if a new epoch is to be performed or if a new sample
is to be collected and training is to be performed with this new sample included in the
sliding window.

Each time a new sample is collected both the direct and inverse models must be
re-evaluated with the new test set and the information about the best models updated.

The procedure for the inverse model is very similar and almost the same block
diagram could be used to represent it. The on-line training goes on switching from
direct to inverse model each time a new model is produced. The main difference
between the procedure for direct and inverse model lies in the evaluation step. While
the direct model is evaluated with a simple test set, the inverse model is evaluated
with a control simulation corresponding to the hybrid Direct/Specialized approach for
generating inverse models [9].

During the on-line training the NNSYSID [10] and NNCTRL [11] toolboxes for
MATLAB were used.

4 Test System

The test system chosen is a reduced scale prototype kiln for the ceramic industry which
is non-linear and will be working under measurement noise because of the type B
thermocouple used.

The system is composed of a kiln, electronics for signal conditioning, power
electronics module and a Data Logger from Hewlett Packard HP34970A to interface
with a Personal Computer (PC) connected as can be seen in figure 3.

Through the Data Logger bi-directional real-time information is passed: control sig-
nal supplied by the controller and temperature data for the controller. The temperature
data is obtained using a thermocouple. The power module receives a signal from the
Data Logger, with the resolution of 12 bits (0 to 4.095V imposed by the Data Logger)
which comes from the controller implemented in the Personal Computer, and converts
this signal in a Pulse Width Modulation (PWM) signal of 220V applied to the heating
element.



582 F. Morgado Dias et al.

Heating
Element Thermocouple

Power
Module

Data
Logger

PC

Kiln Chamber

Fig. 3. Block diagram of the system

 

Fig. 4. Picture of the kiln and electronics

The signal conversion is implemented using a sawtooth wave generated by a set
of three modules: zero-crossing detector, binary 8 bit counter and D/A converter. The
sawtooth signal is then compared with the input signal generating a PWM type signal.

The PWM signal is applied to a power amplifier stage that produces the output
signal. The signal used to heat the kiln produced this way is not continuous, but since
the kiln has integrator behaviour this does not affect the functioning.

The Data Logger is used as the interface between the PC and the rest of the system.
Since the Data Logger can be programmed using a protocol called Standard Commands
for Programmable Instruments (SCPI), a set of functions have been developed to
provide MATLAB with the capability to communicate through the RS-232C port to
the Data Logger.

Using the HP34902A (16 analog inputs) and HP34907A (digital inputs and outputs
and two Digital to Analog Converters) modules together with the developed functions,
it is possible to read and write values, analog or digital, from MATLAB. A picture of
the system can be seen in figure 4. The kiln is in the centre and at the lower half are the
prototypes of the electronic modules.
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5 Results

Figure 5 and 6 show the results obtained in a training situation followed by control
using the Direct Inverse Control (DIC) and Internal Model Control (IMC) strategies.

The test sequence is composed of 100 points, the sliding window used for training
has a maximum of 200 samples and training starts after 240 samples have been
collected. It should be noted that comparing these values with the ones used in [6],
the windows are now smaller to compensate for the increasing of computational effort
needed in this approach.

The training is also started later since the samples for the test window must all be
collected before training starts in order to permit the direct comparison of the test errors
through all the procedure.

Both direct and inverse models were one hidden layer models with 6 neurons on the
hidden layer and one linear output neuron. The direct model has as inputs the past two
samples of both the output of the system and the control signal.

The sampling period used was 150 seconds, which allowed performing several
epochs of training between each control iteration.

During the initial phase of collecting data a PI was used in order to keep the system
operating within the range of interest. The PI parameters are Kp=0.01 and Ki=0.01.
After this initial phase the PI is replaced by the DIC or the IMC controller, using the
direct and inverse models trained on-line.

Fig. 5. On-line identification and control. The first part of the control is performed by a PI and
the second by DIC
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Fig. 6. On-line identification and control. The first part of the control is performed by a PI and
the second by IMC

Table 1. Mean Square Error for the two control strategies used

Control Type Sampls 300 to 1000
DIC 0,46
IMC 0,65

In both situations the first inverse model is ready at sample 243, that is only 2
samples after the training has started. After the 240 samples have been collected it
only took one sampling period to complete the training of the direct model and another
sampling period to complete the inverse model, even though the Matlab code was
running on a personal computer with a Celeron processor at 466MHz using 64Mbytes
of memory.

The quality of the control obtained in both situations is resumed in therms of Mean
Square error in table 1. As can be seen, the error value for both solutions is very small
(less than one degree per sample) and of the same order.

Although it should not be expected that the error of the DIC solution be smaller
than the one for the IMC, it should be noted that a disturbance can have here a more
important role than the control strategy.
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6 Conclusion

This paper presents on-line identification and control using the Levenberg-Marquardt
algorithm in a batch version with two sliding windows and Early Stopping.

The problems pointed out in section 3 to perform Early Stopping under a changing
sliding window for the training set were not critical and a good choice of the parameters
for identification of the overtraining situation and for the maximum number of iterations
for each attempt to create a model were sufficient to obtain reasonable models to
perform IMC control.

It should be noted that during the time presented in figures 5 and 6 the quality of
control is increasing as the number of samples advances and better models are produced.

The PI is here just used to maintain the system in the operating range while data is
being collected and is disconnected as soon as the ANN models are ready.

The sliding window approach with Early Stopping solves the problems for using the
Levenberg-Marquardt algorithm on-line due to the difficulty of creating a true iterative
version which includes the computation of the trust region.

As shown here, even for a noisy system, for which overtraining is a real problem it
is possible to create models on-line of acceptable quality as can be concluded from the
values presented in table 1.
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9. Fernando Morgado Dias, Ana Antunes, and Alexandre Mota, “A new hybrid
direct/specialized approach for generating inverse neural models,” WSEAS Transactions on
Systems, vol. 3, Issue 4, pp. 1521–1529, 2004.

10. M. Nørgaard, “Neural network based system identification toolbox for use with matlab,
version 1.1, technical report,” Tech. Rep., Technical University of Denmark, 1996.

11. M. Nørgaard, “Neural network based control system design toolkit for use with matlab,
version 1.1, technical report,” Tech. Rep., Technical University of Denmark, 1996.



Boosting Parallel Perceptrons for Label Noise
Reduction in Classification Problems

Iván Cantador and José R. Dorronsoro�
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Abstract. Boosting combines an ensemble of weak learners to construct
a new weighted classifier that is often more accurate than any of its com-
ponents. The construction of such learners, whose training sets depend
on the performance of the previous members of the ensemble, is carried
out by successively focusing on those patterns harder to classify. This
fact deteriorates boosting’s results when dealing with malicious noise
as, for instance, mislabeled training examples. In order to detect and
avoid those noisy examples during the learning process, we propose the
use of Parallel Perceptrons. Among other things, these novel machines
allow to naturally define margins for hidden unit activations. We shall
use these margins to detect which patterns may have an incorrect label
and also which are safe, in the sense of being well represented in the
training sample by many other similar patterns. As candidates for being
noisy examples we shall reduce the weights of the former ones, and as a
support for the overall detection procedure we shall augment the weights
of the latter ones.

1 Introduction

The key idea of boosting methods is to iteratively construct a set {ht} of weak
learners that are progressively focused on the “most difficult” patterns of a
training sample in order to finally combine them in a final averaged hypothe-
sis H(X) =

∑
t αtht(X). More precisely [7], a starting uniform distribution

D0 = {d0(X)} is progressively updated (see section 3 for more details) to

dt+1(X) =
1
Zt

dt(X)e−αtyXht(X), (1)

where Zt is a probability normalization constant, yX = ±1 is the class label asso-
ciated to X and the averaging constant αt > 0 is related to the training error εt of
ht. If a pattern X is incorrectly classified after iteration t, we have yXht(X) < 0
and, therefore, boosting iteratively focuses on the incorrectly classified patterns.

When label noisy dataset classification problems (i.e., problems where some
pattern labels are incorrect) are considered, this property has two consequences.

� With partial support of Spain’s CICyT, TIC 01–572, TIN 2004–07676.
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On the one hand, while boosting has been used with great success in several
applications and over various data sets [2], it has also been shown [3, 4] that it
may not yield such good results when applied to noisy datasets. In fact, assume
that a given pattern has label noise, that is, although clearly being a member of
one class, its label corresponds to the alternate class. Such a label noisy pattern is
likely to be repeatedly misclassified by the successive hypotheses which, in turn,
will increase its sampling probability, causing boosting to hopelessly concentrate
on it and progressively deteriorate the final hypothesis.

Furthermore, mislabeled training examples will tend to have high probabi-
lities as the boosting process advances, which implies that after few iterations,
most of the training examples with high weights should correspond to misla-
beled patterns, and gives a good motivation to use boosting as a noise filter,
as done for instance in [8], where it is proposed that after a number N of
rounds, the examples with the highest weights are removed from the training
sample. This should allow a more efficient subsequent learning, but also has
problems of its own as, for instance, the definition of the exact percentage of
presumably noisy examples to be filtered (or, more generally, how to choose a
“high enough” weight), or the appropriate choosing of the number N of boosting
rounds.

On the other hand, a second issue to be considered on any boosting strategy
is the fact that the probabilities of correctly classified examples are progressively
diminished. Intuitively, this is a good idea, because the examples that are inco-
rrectly predicted by previous classifiers are chosen more often than examples that
were correctly predicted, and boosting will attempt to produce a new classifier
more able to handle correctly those patterns for which the current ensemble
performance is poor. However, in the presence of medium to high levels of noisy
examples, the weak learners may have many difficulties to obtain good separation
frontiers, as there may be not enough correctly classified examples in the training
samples to do so. In particular, they may be not be able to distinguish between
the true mislabeled examples and the incorrectly classified (but well labeled)
ones. In other words, it may be sensible to keep an adequate representation
of correctly classified patterns in boosting’s training sets, as they should make
noisy examples to be more easily found. Thus, a “reverse boosting” strategy
of keeping well classified patterns, i.e., the “safe” ones, while diminishing label
noisy ones may allow a reasonable learning procedure in the label noisy setting.
The problem, of course, is how to detect good patterns (even if they may be
somewhat redundant) and, more importantly, how to detect noisy patterns. If
done properly, an adequate weighting of boosting’s exponent should dismiss the
latter patterns while keeping the former.

We shall follow this general approach in this work, using Parallel Perceptrons
(PPs; [1]) or, more precisely, their activation margins, to detect simultaneously
good and noisy patterns. As we shall see in section 2, PPs, a variant of the cla-
ssical committee machines, not only learn “best” perceptrons but also stabilize
their outputs by learning optimal hidden unit activation margins. These margins
shall be used in section 3 to classify training patterns in the just mentioned safe
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and noisy categories and a third one, borderline patterns, somehow in between
of the other ones. This, in turn, can be used to adjust boosting’s probability up-
dates. We will do so here by changing the exponent in (1) to αtR(X)yXht(X),
where the R(X) factor will be −1 for safe patterns (increasing their probabil-
ity) and noisy ones (decreasing now it), and 0 for the bordeline ones (leaving
their probability essentially unchanged). The resulting approach will be favor-
ably compared in section 4 with other options such as boosting and bagging of
PP and also of standard multilayer perceptrons (MLPs). Finally, the paper will
close with a brief summary section and a discussion of further work.

2 Parallel Perceptron Training

Parallel Perceptrons (PP) have the same structure of the well-known committee
machines (CM) [6]. These are made up of an odd number H of standard percep-
trons Pi with ±1 outputs and they have a single one–dimensional output that is
simply the sign of the sum of these perceptrons’ outputs (that is, the sign of the
overall perceptron vote count). More precisely, if perceptron i has a weight Wi,
its output for a given D–dimensional input pattern X is Pi(X) = s(Wi · X) =
s(acti(X)), where s(·) denotes the sign function and acti(X) = Wi · X is the
activation of perceptron i due to X (we may assume xD = 1 for bias purposes).
The output of the CM is then h(X) = s

(∑H
i=1 Pi(X)

)
. We will assume that

each input X has an associated ±1 label yX and take the output h(X) as correct
if yXh(X) = 1. If this is not the case, i.e., whenever yXh(X) = −1, classical
CM training tries to change the smallest number of perceptron outputs so that
X could then be correctly classified (see [6], chap. 6). On the other hand, PP
training changes the weights of all incorrect perceptrons, i.e. those Pi verifying
yXPi(X) = −1. In both cases, the well-known Rosenblatt’s rule

Wi := Wi + η yXX (2)

is applied, with η a learning rate. However, the main difference between CM and
PP training is the margin stabilization procedure of the latter. More precisely,
when a pattern X is correctly classified, PP training also applies a margin–based
output stabilization procedure to those perceptrons for which 0 < yXacti(X) <
γ. That is, it tries to keep their activations acti(X) away from zero, so that a
small perturbation of X does not cause Pi to change its output over X. To get
activations far away from zero, Rosenblatt’s rule is again applied

Wi := Wi + µ η yXX (3)

when 0 < yXacti(X) < γ. The new parameter µ weights the importance we give
to clear margins. Moreover, the value of the margin γ is dynamically adjusted:
after a pattern X is processed correctly, γ is increased to γ + 0.25η if for all
correct perceptrons we have yXacti(X) > γ, while we decrease γ to γ − 0.75η if
0 < yXacti(X) < γ for at least one correct perceptron. The updates (2) and (3)
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can be seen as a kind of gradient descent with respect to the following criterion
function

J(W) = −
∑

{X:yXh(X)=−1}


 ∑

{i:yXWi·X<0}
yXWi · X


 +

µ
∑

{X:yXh(X)=1}


 ∑

{i:0<yXWi·X<γ}
(γ − yXWi · X)




= J1(W) + µJ2(W), (4)

where we have written W = (W1, . . . , WH). J1 is basically a classification error
measure (it is 0 if all X are correctly classified), while J2 can be seen as a
regularization term with µ being the regularization’s weight (it is 0 if all correct
activations are above the margin γ). PP training can be performed either on line
or in batch mode. Since we will use PPs in a boosting framework, we shall use
the second procedure. Moreover, notice that for the margin to be meaningful,
weights have to be normalized somehow; we will make their euclidean norms to
be 1 after each batch pass.

In spite of their very simple structure, PPs do have a universal approximation
property and, as shown in [1], they provide results in classification and regression
problems quite close to those offered by C4.5 decision trees and only slightly
weaker that those of standard multilayer perceptrons (MLPs).

3 Label Noise Reduction Through Parallel Perceptron
Boosting

We first discuss how PP’s activation margins can be used to detect safe, label
noisy and borderline patterns. More precisely, as just described, PPs adaptively
adjust these margins, making them to converge to a final value γ that ensures sta-
ble PP outputs. Thus, if for a pattern X its i–th perceptron activation verifies
|acti(X)| > γ, s(acti(X)) is likely to remain unchanged after small perturba-
tions of X. Given the voting outputs of PP, we will accordingly take a pattern
as safe if for �H/2� perceptrons Pi (i.e., their majority) we have yXacti(X) > γ,
as such an X is likely to be also correctly classified later on. Similarly, if for
�H/2� perceptrons we have yXacti(X) < −γ, X is likely to remain wrongly
classified, and we will take it to be label noisy. As borderline patterns we will
simply take the remaining X. We shall use the notations St, Nt and Bt for the
safe, noisy and borderline training sets at iteration t. As an example, in fig-
ure 1 we show how the safe (squared points) and label noisy (crossed points)
patterns of a 2–dimensional XOR problem with 10% of noise level have been
detected using a 3–perceptron PP. It shows that almost all label noisy and safe
patterns that are quite likely to remain stable in further trainings have been
selected.
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Fig. 1. Safe and mislabeled patterns detection using a PP of 3 standard perceptrons
on a 2–dimensional XOR problem with 10% of noise level

Let us see how to use this categorization in a boosting–like setting. Recall that
boosting’s probability updates are given by the rule (1), where Zt =

∑
X dt(X),

αt =
1
2

ln
(

1 − εt

εt

)
,

and εt is the iteration error with respect to dt, i.e.,

εt =
∑

{X : yXht(X)=−1}
dt(X).

We introduce safe, noisy and borderline into the boosting process through a
pattern dependent factor R(X) in the boosting probability actualization proce-
dure as follows

dt+1(X) =
1
Z ′

t

dt(X)e−αtR(X)yXht(X), (5)

with Z ′
t again a normalization constant. Notice that we recover standard boosting

by setting R(X) = 1. Now, we want to diminish the influence of label noisy pat-
terns X ∈ Nt, so we put R(X) = −1, which should make dt+1(X) < dt(X), di-
minishing therefore their importance at the t+1 iteration. Moreover, setting also
R(X) = −1 for safe patterns, we now have αtR(X)yXht(X) < 0, as yXht(X) > 0
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Table 1. Accuracies for the PP, MLP bagging and boosting procedures over 3 synthetic
datasets with 0%, 5%, 10%, 20% and 30% of noise level in the training samples (best
in bold face, second best in italics)

Dataset Noise PP PP PP MLP MLP
level bagging boosting NR

boosting
bagging boosting

twonorm 0 % 96.597 96.267 96.800 96.733 97.100
5 % 93.600 89.400 95.933 95.700 93.000

10 % 90.900 84.600 95.733 94.033 90.733
20 % 83.800 75.233 93.367 90.900 81.967
30 % 73.800 68.467 90.167 85.200 72.833

threenorm 0 % 79.367 75.933 78.233 82.933 83.533
5 % 77.033 73.700 78.233 81.367 80.100

10 % 74.867 71.367 77.700 79.067 77.300
20 % 70.100 65.467 75.000 74.733 71.133
30 % 66.467 60.967 71.233 69.600 63.033

ringnorm 0 % 63.900 60.800 64.067 75.900 78.233
5 % 61.533 59.100 63.400 75.400 75.300

10 % 61.133 59.033 62.100 72.200 71.433
20 % 57.967 56.367 60.600 67.967 64.433
30 % 56.667 54.000 59.233 61.700 57.300

for them; hence, dt+1(X) > dt(X), as desired. Finally, for borderline patterns
X ∈ Bt we shall take R(X) = 0, that except for changes on the normalization
constant, should give dt+1(X) � dt(X). Notice that except for borderline pat-
terns, the proposed procedure, which we call NR boosting, comes to essentially
being a “reversed” boosting, as it gives bigger emphasis to correct patterns and
smaller to the wrong ones, just the other way around to what boosting does.
We shall numerically compare next NR boosting against standard boosting and
bagging of PPs and of the much stronger learners given by MLPs.

4 Experiments

In order to have a better control of the noise added, we have used in our ex-
periments three well known synthetically generated datasets of size 300, the
twonorm, threenorm and ringnorm datasets, also used in other boosting ex-
periments [2]. We briefly recall their description. They are all 20–dimensional,
2–class problems. In twonorm each class is drawn from a multivariate normal
distribution with unit covariance matrix. Class #1 has mean (a, a, . . . , a) and
class #2 has mean (−a,−a, . . . ,−a) where a = 2/

√
20. In threenorm, class #1

is now drawn from two unit covariance normals, one with mean (a, a, . . . , a) and
the other with mean (−a,−a, . . . ,−a). Class #2 is drawn from a unit covari-
ance normal with mean (a,−a, a,−a, . . . ,−a). Here a = 2/

√
20 too. Finally, in

ringnorm, class #1 follows a normal distribution with mean 0 and covariance
matrix 4 times the identity and class #2 is a unit covariance normal and mean
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(a, a, . . . , a) where now a = 1/
√

20. The twonorm and threenorm problems are
clearly the easier ones, as they are essentially linearly separable, although there
is a greater normal overlapping in threenorm, that gives it a much higher optimal
Bayes error probability. Ringnorm is more difficult: the more concentrated inner
second normal is quite close to the mean of the wider first normal. In particular,
the Bayes boundary is basically a circle, quite difficult to learn with hyperplane
based methods such as PPs (this is also the case [5] with other simple methods,
such as nearest neighbors, linear discriminants or learning vector quantization).

We will compare the results of the PP procedure described in section 3 with
those of standard bagging and boosting. These two will also be applied to MLPs.
PP training has been carried out as a batch procedure. In all examples we have
used 3 perceptrons and parameters γ = 0.05 and η = 10−3. As proposed in [1],
the η rate does not change if the training error diminishes, but is decreased to
0.9η if it augments. Training epochs have been 250 in all cases; thus the training
error evolution has not been taken into account to stop the training procedure.
Anyway, this error has an overall decreasing behavior. The MLPs, each with a
single hidden layer of 3 units and a learning rate value of η = 10−3, were trained
during 2000 epochs.

In all cases the number of boosting rounds was 10 and we have used 10–times
10–fold cross validation. That is, the overall data set has been randomly split in
10 subsets, 9 of which have been combined to obtain the initial training set. To
ensure an appropriate representation of both classes in all the samples, stratified
sampling has been used. The final PPs and MLPs’ behaviors have been computed
on the remaining, unchanged subset, that we keep for testing purposes.

All training samples were artificially corrupted with different levels of cla-
ssification noise: 5%, 10%, 20% and 30%. Table 1 gives the overall accuracies
for the five construction procedures (best values are in bold face, second best in
italics). They are also graphically represented in figure 2. In all cases MLPs give
best results in absence of noise, with PPs being close seconds for twonorm and

Fig. 2. Graphical comparative results of the accuracies given in table 1. NR boosting
accuracies decrease quite slowly; it is thus the more noise robust method
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threenorm, but not so for the more difficult ringnorm. When noise increases, NR
boosting gives best results in twonorm for all noise levels and for the 20% and
30% levels in threenorm; it is second best in the 10% level. It cannot overcome
the large head start of MLPs in ringnorm, although is second best for the 30%
noise level. On the other hand, NR boosting is clearly the most robust method.
For instance, their 30% noise accuracies are just 6.63 points below the noise
free ones in twonorm, 7.00 points in threenorm and 4.83 in ringnorm. For MLP
bagging (the more robust MLP procedure), its drops are 11.53, 13.39 and 14.20
respectively. This behavior is clearly seen in figure 2.

5 Conclusions and Further Work

We have shown how the concept of activation margin that arises very naturally
on PP training can be used to provide a robust approach to label noise reduction.
This is done adding an extra factor R(X) to boosting’s exponential probability
update, with values R(X) = −1 for safe and label noisy patterns and R(X) = 0
for the borderline ones. The assignment of a pattern to each category is done
through its activation margins. The resulting procedure has been successfully
tested on three well-known synthetic datasets, artificially corrupted with diffe-
rent levels of classification noise. NR boosting has been shown to have a very good
overall performance and it is the most robust method, as its accuracies decrease
very slowly and it gives the smallest overall drop. Further work will concentrate
on the pursuit of a more general approach to malicious noise detection using the
ideas of redundant and label noisy patterns categorizations.
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Abstract. The Human Visual System (HVS) presents some properties
that are shared by the results obtained when Independent Component
Analysis (ICA) is applied to natural images. Particularly, the special
appearance of the ICA bases (they look like “edges”) and the sparse
distribution of the independent components have been linked to the re-
ceptive fields of the simple neurons in the visual cortex and their way
to codify the visual information, respectively. Nevertheless, no theoret-
ical study has been provided so far to explain that behaviour of ICA.
The objective of this paper is to analyze, both mathematical and exper-
imentally, the results obtained when ICA is applied to natural images in
order to supply a theoretical basis for the connection between ICA and
the HVS.

1 Introduction

The primary visual cortex (V1) is the maximum responsible of the way in which
we perceive the world. It uses the luminous information detected by the photore-
ceptors in the retina (cones and sticks) to generate a topographical representation
of the environment [7][13].

In V1, the response of a each neuron is associated to the intensity pattern
of a very small part or patch of the visual field. In addition, this dependence is
determined by a pattern of excitation and inhibition called receptive field : for
example, the so-called simple cells of V1 respond to oriented image structures,
meaning that their receptive fields match with “edges” [7]. The model usually
accepted for the response of V1 neurons is the linear one [10]:

sj =
∑
x,y

wj(x, y)I(x, y), for any neuron j (1)

J. Mira and J.R. Álvarez (Eds.): IWINAC 2005, LNCS 3562, pp. 594–603, 2005.
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where (x, y) denotes spatial position, wj(x, y) model the receptive field of the
neuron j in question, and I(x, y) is one patch of the natural scene perceived by
the eye.

Several researchers have argued that this representation of natural images in
V1 is characterized by two important features. First, the visual cortex uses a fac-
torial code to represent the visual environment, i.e., the responses sj are sparsely
distributed. This means that only a small number of neurons are activated at the
same time. Second, the neurons in V1 use an strategy based on the principle of
redundancy reduction, i.e., neurons should encode information in such a way as
to minimize statistical dependencies among them [1][6][13][14].

Recent works about visual perception have attempted to explain image repre-
sentation in area V1 in terms of a probabilistic model of the structure of natural
scenes, based on the theory of probabilistic inference. This theory assumes that a
given state of the environment can be inferred from a particular state of activity
of the neurons [13]. Many models described in the literature have used a simple
way to model natural images in which each portion of a scene is described in
terms of a linear superposition of features or basis functions [2][13]:

I(x, y) =
∑

i

si ai(x, y) + ν(x, y) (2)

where ai(x, y) are the features and the coefficients si determine how strong each
feature is present in the image. The variable ν represents Gaussian noise (i.i.d.)
and is included to model structures in the images that may not be well repre-
sented by the basis functions. In addition to this generative model for images,
another thing is needed to infer a solution to this problem: a prior distribution
over the coefficients si, which has to be designed to enforce sparseness in the
representation [13].

This model of generation of natural images was first linked with Indepen-
dent Component Analysis (ICA) by Bell and Sejnowski [2] (more results can
be found in [10][11]), a mathematical procedure for analyzing empirical data.
Applying the theory of probabilistic inference, the idea was that ICA could pro-
vide a good model of image representation in V1. This hypothesis was based
on several interesting characteristics that bore a strong resemblance with some
properties of the HVS mentioned previously. First, ICA assumes that each partic-
ular signal of an ensemble of signals is a superposition of elementary components
that occur independently of each other, recalling the behaviour supposed for V1
neurons. Furthermore, when ICA is applied to natural images, the independent
components obtained turn to be sparse, just like the distribution assumed for
the responses of V1 neurons. Moreover, ICA bases appear to be like “edges”,
similarly to the receptive fields of simple cells. The objective of this paper is to
provide a mathematical basis for this properties of ICA, that are also useful in
many fields of digital image processing like texture segmentation, edge detection
[8], digital watermarking [9] or elimination of noise [11].

The paper is structured as follows. In section 2 we will analyze mathematically
the behaviour of ICA when it is applied to natural images and we will go more
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deeply into its connection with the HVS. Section 3 is dedicated to show some
experiments. We will finish with some conclusions in section 4.

2 Mathematical Analysis of the Connection Between
ICA and the HVS

Independent Component Analysis (ICA) is an emergent technique for studying
empirical data [3][4][11]. It involves a mathematical procedure that transforms a
number of zero-mean observed variables x1, ..., xN into a number of “as statisti-
cally independent as possible” variables s1, ..., sN called independent components.
In linear ICA, this transformation reads:

si =
N∑

n=1

binxn, ∀i = 1, ..., N (3)

The inverse model is given by:

xi =
N∑

n=1

ainsn, ∀i = 1, ..., N (4)

Here ain and bin (i, n = 1, ..., N) are real coefficients. In matrix form,

S = BX ⇐⇒ X = AS (5)

where B = (bij) and A = B−1 = (aij).
Based on this mathematical representation of the data and on the results

obtained by Barlow [1] and Field [6], Bell and Sejnowski [2] hypothesized that
ICA could provide a good model of the behaviour of the simple cells localized
in the primary visual cortex (see also the works published by Hyvärinen et
al [10][11] and Olshausen et al [14]). More precisely, they showed that when
ICA is applied to natural images (i.e., variables xi contain the pixels of the
particular image) the results obtained presented some interesting resemblance
with the behaviour of the V1 neurons hypothesized by Barlow and Field. First
of all, the independent components, si, were sparsely distributed, modelling the
neurons’ responses. Secondly, the ICA bases (columns of matrix A) appeared to
be like “edges”, recalling the structure of the receptive fields of simple cells. Our
justification for these results is as follows.

First of all, among the different ways to carry out the independent compo-
nent analysis of empirical data, we will focus on the maximization of high-order
cumulants, like skewness and kurtosis, which is a very popular criterion that is
inspired in the Central Limit Theorem [4][11][12].

To apply ICA to an image I, we divide it into N2 patches of k1 × k2 pi-
xels each. These patches are stacked into the columns of matrix X, obtaining
X = [x1|x2|...|xN2 ] where xj = [x1j , x2j , ..., xN1j ]T contains the j -th patch, with
j = 1, 2, ..., N2 and N1 = k1 k2. We consider each row of matrix X as a realization
of a random process.
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Let us define y = bT X = [y1, y2, ..., yN2 ], where yi = bT xi. Our objective is
to find the vector b that solves the following constrained optimization problem:

max
b

Jp (y) =
1

N2

N2∑
j=1

yp
j subject to

1
N2

N2∑
j=1

yj
2 = 1 (6)

with p > 2. The restriction is necessary to avoid the solution b → ∞. When
p = 3, Jp (y) is an estimation of the skewness. If p = 4, Jp (y) leads to the
kurtosis.

The Lagrangian L(y, λ) is given by:

L (y, λ) = Jp (y) − λ


 N2∑

j=1

yj
2 − N2


 (7)

where λ is the Lagrange multiplier. It is shown in the Appendix that the sta-
tionary points of L(y, λ) are the solutions to:

∂

∂b
L (y, λ) =

1
N2

(
pXyp−1 − 2λXy

)
= 0

∂

∂λ
L (y, λ) =

1
N2

‖y‖2
2 − 1 = 0 (8)

where ∂
∂bL(y, λ) is a N1 × 1 vector whose k -th component is ∂

∂bk
L(y, λ), and

yk def
=




yk
1

yk
2

...
yk

N2


 (9)

One class of solution is obtained when pyp−1 = 2λy, i.e., either yj = 0 or:

yj =
(

2λ

p

) 1
p−2

(10)

for each j = 1, 2, ..., N2, with the restriction ‖y‖2 =
√

N2. In this case, sparse
solutions are possible. Specifically, it can be easily shown that (6) attains a global
maximum when one and only one of the yj is different from zero.

Another class of solution is obtained when vector pyp−1−2λy is orthogonal
to every row of X (then, it is said that pyp−1 − 2λy belongs to the kernel or
null-space of X). Mathematically:

p

N2∑
n=1

xknyp−1
n − 2λ

N2∑
n=1

xknyn = 0, ∀k = 1, 2, ..., N1 (11)

Again, we have find a solution when :

λ =
p
∑N2

n=1 xknyp−1
n

2
∑N2

n=1 xknyn

(12)
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Fig. 1. The “Lena” image (256 × 256)

for every row k = 1, 2, ..., N1 of X. So, we will have that:∑N2
n=1 xknyp−1

n∑N2
n=1 xknyn

=
∑N2

n=1 xjnyp−1
n∑N2

n=1 xjnyn

,∀k �= j (13)

For N2 sufficiently large, this solution is equivalent to

E{xknyp−1
n }

E{xknyn}
=

E{xjnyp−1
n }

E{xjnyn}
,∀k �= j (14)

Also in this case, sparse solutions are possible.

3 Example

Let us take the natural grey-scale image showed in Fig. 1. We divide it into 8×8
patches to obtain the matrix of observations and apply ICA (for example, using
FastIca algorithm [5]).

In Fig. 2 we show some of the rows of matrix the S corresponding to the
“Lena” image, which have, as we shown in the previous section, an sparse dis-
tribution.

As we introduced before, there is a striking resemblance between this result
and the conclusions obtained by Barlow [1], who hypothesized that the primary
visual cortex of mammals uses factorial code (i.e., independent components)
to represent the visual environment. Such a code should be sparse in order to
reduce the redundancy of the sensory signal, which would appear to constitute a
sensible coding strategy for making the most use of the limited resources of the
optic nerve [13]. This hypothesis was confirmed by Field [6], who also justified a
relation between the receptive fields of V1 neurons and the Gabor filters [11][13].
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Fig. 2. Some rows of matrix S

Fig. 3. ICA bases obtained for the “Lena” image, that has been divided into 8 × 8
patches

Moreover, the (k1k2 × k1k2) matrix A has a very particular structure. If
we arrange its columns into (k1 × k2) blocks and represent them as images, we
observe that most of them look like edges with different orientations, as shown
in Fig. 3. These images are usually called ICA bases and would play the role of
the features in the generative model of natural images (2). Besides, these ICA
bases (more specifically matrix B = A−1) have been linked to the mentioned
receptive fields of the simple cells localized in the primary visual cortex [2][11].
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Fig. 4. Patches of the image that are similar to the ICA bases

Nevertheless, all these similarities between the results obtained when ICA is
applied to natural images and the behaviour of the V1 neurons, have been mere
observations so far. The purpose of this paper is to provide a mathematical
basis for this connection between ICA and the HVS. Let us return to the ICA
model (5). Since X = AS, the i -th column of X, xi = [x1i, x2i, ..., xN1i]T ,
i = 1, 2, ..., N2, can be written as:

xi = Asi = s1i a1 + s2i a2 + ... + sN1i aN1 (15)

where si = [s1i, s2i, ..., sN1i, ]T , i = 1, 2, ..., N2, is the i -th column of S and
ak = [a1k, a2k, ..., aN1k, ]T , k = 1, 2, ..., N1, is the k -th column of A. As shown in
the previous Section, si has a sparse distribution, so that most of its elements are
negligible (e.g., see Fig. 2). It follows that there even exist indexes j for which

xi = Asi
∼= sji aj (16)

It means that most of the ICA bases are, except for a scale factor, like patches of
the original image. In practice, as illustrated in Fig. 3, the ICA bases are edges
that already exist in the image (e.g., the locations of the edges shown in Fig. 3
are highlighted in Fig. 4).

To illustrate that when the ICA bases are edges (6) is maximum, let us do
the following experiment. We build two matrices of bases, A1, obtained from
edges of the “Lena” image, and A2, obtained from patches taken randomly
from the same image. We calculate the matrices S1 and S2 using A1 and A2,
respectively, and obtain both the skewness and the kurtosis of these two groups
of independent components. Skewness is a particular case of Jp (y) when p = 3
and kurtosis is very similar to J4 (y) (see (6)). In Fig. 5 are shown the results
obtained. Both the skewness and the kurtosis are greater when the ICA bases
are edges than when they are any other kind of pattern.
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Fig. 5. Skewness and kurtosis of the independent components y when bases are like
edges (◦) and when bases are like any other pattern (+)

4 Conclusions

The Human Visual System (HVS) present some properties that have been con-
nected to the mathematical technique called Independent Component Analysis
(ICA), when it is applied to natural images. Particularly, the ICA bases appears
to be like “edges”, just like the receptive fields of a certain kind of neurons of
the primary visual cortex (V1), the simple cells. On the other hand, the sparse
distribution of the independent components have been linked with the responses
of V1 neurons, also sparsely distributed. Nevertheless, no theoretical study has
been provided so far to explain that special behaviour of ICA when it is applied
to natural images. In this paper we have analyzed this question, both mathemat-
ical and experimentally, in order to give a theoretical basis for the connection
between ICA and the HVS.

Applications arise in digital image processing like texture segmentation, edge
detection [8], digital watermarking [9] or elimination of noise [11].
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Appendix: Proof of eqn. (8)

The derivative of (7) with respect to k -th element of b, bk, is given by:

∂

∂bk
L (y, λ) =

∂

∂bk
Jp (y) − λ

∂

∂bk


 N2∑

j=1

yj
2 − N2


 (17)

The first term is given by:

∂

∂bk
Jp (y) =

1
N2

∂

∂bk
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j=1

yj
p =

1
N2

∂

∂bk
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bT xj
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=
p

N2

N2∑
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yp−1xkj (18)

=
p

N2
[xk1, xk2, ..., xkN1 ]y

p−1

since yj = bT xj =
∑N1

j=1 bkxkj , where xkj is the entry (k, j) of matrix X, and

yk def
=
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...
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 (19)
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Secondly,

λ
∂

∂bk


 N2∑

j=1

yj
2 − N


 = 2λ

N2∑
j=1

yj
∂

∂bk
yj = 2λ

N2∑
j=1

yjxkj (20)

In matrix form, we have:

∂

∂b
L (y, λ) =

1
N2

(
pXyp−1 − 2λXy

)
(21)

where ∂
∂bL(y, λ) is a N1 × 1 vector and ∂

∂bk
L(y, λ) is its k -th component.

On the other hand:

∂

∂λ
L (y, λ) =

N2∑
j=1

y2
j − N2 = ‖y‖2

2 − N2 (22)
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Abstract. There are two big stages to implement in a signal classifi-
cation process: features extraction and signal classification. The present
work shows up the development of an automated classifier based on the
use of the Wavelet Transform to extract signal characteristics, and Neu-
ral Networks (Feed Forward type) to obtain decision rules. The classifier
has been applied to the nuclear fusion environment (TJ-II stellarator),
specifically to the Thomson Scattering diagnostic, which is devoted to
measure density and temperature radial profiles. The aim of this work
is to achieve an automated profile reconstruction from raw data without
human intervention. Raw data processing depends on the image pat-
tern obtained in the measurement and, therefore, an image classifier
is required. The method reduces the 221.760 original features to only
900, being the success mean rate over 90%. This classifier has been pro-
grammed in MATLAB.

1 Introduction

The TJ-II is a medium-size stellarator (heliac type) [1] located at CIEMAT
(Spain). The Thomson Scattering (TS) in plasmas consists in the re-emission of
incident radiation (from very powerful lasers) by free electrons. Electron velocity
distribution generates a spectral broadening of the scattered light (by Doppler
effect) related to the electronic temperature. The total number of scattered pho-
tons is proportional to the electronic density.

Every laser shot produces a bi-dimensional image from which is possible to
obtain radial profiles of temperature and density. Only a restricted number of
pattern images appear in the TJ-II. They represent different physical situations
related to either the plasma heating or the system calibration. Depending on the
pattern obtained, data are processed in different ways. Therefore, to perform an
automated data analysis, a computerized classification system must provide the
kind of pattern obtained in order to execute the proper analysis routines.

J. Mira and J.R. Álvarez (Eds.): IWINAC 2005, LNCS 3562, pp. 604–612, 2005.
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As in any classification process, Thomson Scattering images need to be pre-
processed in a suitable way [2]. Most of the analyses try to extract either unique
or common signal features, thereby allowing identification of patterns that reflect
similar experimental conditions [3, 4].

The present work shows up the development of an automated classifier (pro-
grammed in MATLAB) made up of two phases. The first one (feature extrac-
tion) uses the Wavelet Transform, and the second one (classification) makes use
of Multilayer Neural Networks (Feed Forward type).

1.1 Image Patterns

The TJ-II Thomson Scattering images can be grouped under five different classes
(Fig. 1).

Table 1 shows a brief description corresponding to every pattern.
As it can be seen in Fig. 1, all the patterns except BKGND correspond to

images with, at least, four important features: an empty zone in the middle,
two central vertical components, and a thin line on the right. Without giving
details about the physical meaning of these characteristics, the differences among
the patterns are consequence of the light intensity: very high in the central

Fig. 1. Image patterns: (a) BKGND (b) COFF (c) ECH (d) NBI (e) STRAY

Table 1. Description of TJ-II Thomson Scattering patterns

Pattern Description

BKGND CCD Camera background
COFF Reached cut off density for plasmas heated by Electron Cyclotron Resonant Heating
ECH Plasmas heated by Electron Cyclotron Resonant Heating
NBI Plasmas heated by Neutral Beam Injectors
STRAY Measurement of parasitic light without plasma
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components for the NBI case, low for the ECH case (although with a very intense
thin line), central components grouped at the bottom for the COFF case, and
practically null for the STRAY case.

2 Procedures for Data Mining and Information Retrieval

In this section effective feature extraction and classification methods for images
are briefly illustrated. Firstly, a short review of the Wavelet Transform and its
application to the signals is presented. Secondly, the Neural Networks technique
used in the signal classification process is described. Finally, training and vali-
dation procedures of the classification method are commented.

2.1 Wavelet Transform

In many cases the signals present pseudo-periodic behaviour, oscillating around
a fixed frequency. The most widely used analysis tool for periodic signals is the
Fourier Transform, which allows to study time depended signals in the frequency
domain. However, there are many other signals that can present a non-periodical
behaviour, whose principal features must be obtained from a temporal analysis.
For these signals, the Fourier Transform is unsuitable.

To analyze signals which present periodic and non-periodic behaviour is nec-
essary to make use of transforms in the time-frequency plane. For such a rea-
son the Wavelet Transform (WT), that overcomes the drawbacks of the Fourier
Transform, is used. In fact, as it is shown in Fig. 2, it is a Time-Scale approach,
which allows understanding the results in the time-frequency plane. Note that
the scale is inversely proportional to the frequency.

 

Time

S
c
a
l
e

Fig. 2. Time-Frequency relation of the Wavelet analysis

Wavelet Transform Processing. The Wavelet Transform compares the orig-
inal signal with the so-called Mother Wavelet. The Mother Wavelet is a wavelet
prototype function, which can be modified to scale and to shift the signal as
needed. Fig. 3 displays two types of Mother Wavelet function belonging to the
Daubechies and Haar types. The correlation coefficients can be obtained from
the comparison between the different Mother Wavelet functions and the original
signal. From these coefficients it is possible to reconstruct the original signal
using the inverse of the Wavelet Transform.
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Fig. 3. Mother Wavelets, (a) Daubechies 2 and (b) Haar

 

Fig. 4. Wavelet Transform processing

Fig. 4 shows the described process.
Once the Wavelet Transform is performed for all-possible scales (or levels),

many characteristics of the signal are obtained. However, to select the most
interesting scales and shifts for a concrete signal is a very difficult task. For
such a reason, it is very common to analyze the signal by the Discrete Wavelet
Transform. This transform consists in choosing only the scales and shifts based
on powers of two. Thanks to this choosing, the redundant information is mini-
mized, and so the computational load is substantially cut down [5, 6, 7].

Application of the Wavelet Transform to Images. Analysis of bidimen-
sional signals is getting great improvements by using Wavelet based methods.
For this problem Wavelet analysis technique makes use of regions with variable
size. This technique allows not only to analyze regions of considerable size where
information associated to low frequencies can be found (nearly homogeneous re-
gions), but also small regions where information related to high frequencies is
contained (vertices regions, edges or colours changes).

It is possible to characterize an image as a series of approximations and sets
of finer details. The Wavelet Transform provides such a representation. The WT
descomposition is multi-scale: it consists of a set of Approximation coefficients
and three sets of Detail coefficients (Horizontal, Vertical and Diagonals). The
Approximation coefficients represent coarse image information (they contain the
most part of the image’s energy), while the Details are close to zero, but the
information they represent can be relevant in a particular context.

Fig. 5 illustrates this point. It has been obtained applying the WT to the
image of a signal belonging to COFF class, using a Mother Wavelet Haar at
level 2.
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Fig. 5. DWT application to a signal of class COFF: (a) Original Signal, (b) Approxi-
mation, (c) Horizontal Detail, (d) Diagonal Detail, and (e) Vertical Detail

The family of Mother Wavelet functions used plays an important role in the
final results. Its choice comes from experimentation with the work signals. Other
important properties to be considered are the features of the wavelet coefficients
and the decomposition level of the transform.

In relation to the TS signals, it has been found [8] that the best coefficient to
characterize the images is the Vertical Detail, when the selected Mother Wavelet
is the Haar at level 4. When applying the mentioned Wavelet Transform to the
signals of the TS, the attributes are reduced from 221.760 to 900. So, the ob-
tained attributes with the Wavelet Transform represent the 0.4% of the complete
original signal.

2.2 Neural Networks: Feed Forward Multilayer

Neuronal Networks (NN) have been used successfully in great number of prob-
lems and applications. There is a diversity of types of NN, each one with a
different structure according to the intentions of designer. However, in every
case is possible to find the basic elements that define them. The NNs consist of
elements of processing called neurons, which are grouped in layers and connected
by synapses with an associate weight [9, 10].
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Fig. 6. Structure of the proposed NN

In the present work, a NN Feed Forward has been used. One of the possi-
bilities of this type of NN is to use it for the supervised learning, where it is
necessary to train the NN indicating to the input layer the attributes of a signal
and the wished values to the output layer.

Fig. 6 shows the NN that has generated the best results. Note that the NN has
an input layer of 900 attributes which come from the previous processing stage
(generated by WT). The hidden layer used 90 with functions of activation Tansig,
whereas the output layer has 5 neurons with functions of activation Logsig. After
the training of the NN, every signal is associated with its class through of the
activation from its output neuron and resetting the remaining ones.

The functions of activation are defined in Eq.1 and Eq.2.

Tansig(n) =
2

1 + exp−2n − 1 . (1)

Logsig(n) =
1

1 + exp−n . (2)

2.3 Train, Classify, and Testing Process

The training processing of the NN implies to obtain a set of weight through
a Back-Propagation algorithm, which produces the minimal error between the
values of the output layer and the wished values.

The classification process implies to use the trained NN to decide whether a
signal presented to the NN belongs to a class or another.

To validate the efficiency of the classifier, the signals were divided randomly
in training and testing sets. In this case, the training set was composed of 60%
of the all signals. Later on, testing set was used to compare the obtained results
with the wished values. To obtain an average performance, the procedure was
realized for 100 different training and testing sets.

3 The Classifier

To implement the previous ideas in the present work, an application named
Thomson Scattering Classifier has been designed in MATLAB [7, 11]. This ap-
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Fig. 7. Thomson Scattering Signals Classifier

3.1 Description of the Application

A brief description of the capabilities and available options of the developed
classifier is given in the following sections.

Signal Image. The image of the signals can be displayed in the Image window
at the left side. To select the signal to be displayed, an item of the Data list has
to be clicked.

Wavelet Transform Configuration. In the application, it is possible to spec-
ify the different parameters associated with the WT. So, if to set up a decompo-
sition level for the signal is wanted, there is to select an option from the popup
Level menu. In this application, it is also possible to define the Mother Wavelet
and in addition the set of obtained wavelet coefficients, that is, the Approxima-
tion (A) or the Detail (D).

Wavelet Transform Image. Once the type of the WT has been selected, the
application displays the Wavelet Transform image of a particular signal. For this

plication allows to manipulate a set of labeled signals, whose main function is
to evaluate the performance of the different classifiers. These classifiers can be
obtained easily by modifying some parameters as: the Mother Wavelet, the de-
composition level, the number of the NN layers, the activation functions, etc.

Fig. 7 presents the graphical user interface of the application.



Image Classifier for the TJ-II Thomson Scattering Diagnostic 611

purpose, it is necessary to select the signal from the Data list and then to click
on the Wavelet option in the View section.

Random Generation of Training and Testing Sets. When pressing the
Generate button, two sets of signals are randomly obtained for training and
testing purposes. The proportion of signals that compose the training set is
defined by the user.

Neuronal Network Parameters. The application allows to set up the NN
parameters to specify: the number of layers, the number of neurons in every
layer, the functions of activation, the required goal, and the training epochs.

Neuronal Network Training. After the application has generated the train-
ing and testing sets, it is necessary to train the NN. For this aim, it is only
necessary to press the Train button. The NN is now ready to classify, only just
if the required goal has been reached.

Testing Signals Classification. To evaluate the testing set, it is necessary to
press the Classify button. So, the classifier will make the predictions for every
signal of the testing set. Automatically, the classifier will also compare the ob-
tained results with the labels of each one of the signals, identifying therefore,
the percentage of hits.

4 Results and Conclusions

Thomson Scattering Classifier allows to do many different kind of classifiers, due
to fact that NN or WT parameters can be changed according to user require-
ments.

We have selected a Mother Wavelet Haar at level 4 with vertical details, while
the selected Neuronal Network has the same structure that the NN proposed in
Fig. 6.

To test the designed classifier, many experiments were made. It is neces-
sary to indicate that the number of signals available at the moment to do the
experiments was 46.

We made 100 experiments, where every experiment was composed of two
signal groups, that is, training and testing set, which were randomly generated.
Fig. 8 shows the results for each one of the classes, being the average percentage
of hits of 90.89%.

The previous classifier, using Wavelet Transform and Neuronal Network, con-
stitutes an alternative for automatic classification of Thomson Scattering signals.

The development of Thomson Scattering Classifier to experiment with the
described techniques, allows to observe the effect of each one in the classification,
to reduce evaluation time, and to search satisfactory parameters.

It is necessary to consider that probably better results can be obtained if
knowledge about the problem context is added. However the presented results
are a start point for new analysis.
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Fig. 8. Results for Each One of the Classes

Finally, it is necessary to emphasize that the training of the classifier has
been done by a limited set of signals. So if the number of signal increase, it will
be possible to improve the Percentage of hits obtained.
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Abstract. This article presents how Computerized Adaptive Tests and
Item Response Theory are modified for using in a Distance Education
Platform, MISTRAL, showing the advantages of using this technique,
the way in which the knowledge acquisition is accomplished, how it links
to student profile and how the students and materials are evaluated.

Keywords: Distance Education Platform, Computerized Adaptive Tests,
Item Response Theory, Adaptive Systems.

1 Introduction

The use of tests for evaluation is a widely employed technique in education.
Traditional test design and management depends on whether or not the test
is oriented to a group or to a single person. Group oriented tests are cheaper
than individual tests in both time and resources, and present the advantage that
every member in the group under examination is faced with exactly the same
constraints (time, environment, etc.). As a trade off, these kind of test must
contain as many difficulty levels as knowledge levels may exist in the group,
while individual tests contain more selective material that is tailored to a given
student.

Group tests can impart undesirable consequences, such as loss of motivation
in students with high knowledge level or disappointment in students with lower
knowledge levels. At the beginning of the 70s, some studies suggested the use of
more flexible tests. Lord [4] established the theoretical structure of a massive test
which was individually adapted: The basic idea of an adaptive test is to imitate
a judicious examiner’s behavior, i.e., if a particular question is not correctly
answered, the next one should be easier than the first; although testing in this
manner only became possible in the early 80s by using cheaper and more powerful
computers. This era gave birth to Computerized Adaptive Tests (CAT). A CAT
is a test managed by computer in which each item is introduced and the decision
to stop are dynamically imposed based on the students answers and his/her
estimated knowledge level.

J. Mira and J.R. Álvarez (Eds.): IWINAC 2005, LNCS 3562, pp. 613–621, 2005.
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First efforts in designing and applying computerized adaptive strategies come
from the 70s as a result of Item Response Theory (IRT) a theoretical mod-
elling development [4, 5], that represents the mathematical basis of any adaptive
strategy.

MISTRAL [9, 10, 11] is software developed to support distance learning. By
incorporating different Artificial Intelligence techniques on Adaptive Hyperme-
dia Systems [1] it is aimed at offering an interesting alternative as a tool for
distance learning because of the rapid development on the internet and the
World Wide Web.

Although it can be argued that there are many solutions that use the same
techniques, the novelty here is that MISTRAL takes into account things such as
adapting teaching strategies to different learning styles, adaptive communication
tools, the student profile and the ability to choose the teaching strategy to be
used. Among MISTRAL tools, a module has been developed that allows gener-
ation of activities and CATs [6, 7] which also partially automate the process of
distance evaluation and update the student’s profile. All of this is presented in
this study.

2 The Process of Evaluating in MISTRAL

On whatever educational platform, the process of evaluation is one of the more
complex steps. In MISTRAL, the capability to adapt to a student issue has
a direct connection with results obtained at that stage. This process, in part,
depends on the sequence of activities the system proposes to the student in the
learning process (Learning Strategy), which must take into account elements
such as the student’s profile and the course model. The course model establishes
the order, links and difficulty level for each node of the coursework, which are
supplied by the course instructor as will be explained later.

2.1 Student Profiling in MISTRAL

In MISTRAL, profiling the student is the process devoted to identify student
knowledge by a specific point in the learning process, starting with an individ-
ually configurable knowledge level supplied by the instructor or by the student.

The initial configuration is composed of two parts:

1. Suppositions about the students’ knowledge are entered the first time the
user activates the system. This user profile is supplied by the course instructor,
based on an anticipated student knowledge level and it serves as the starting
point for the system use and evaluation.

2. Student profiles with respect to psychosociological features are divided
into:

– Suppositions about student learning style, which is measured by using the
Learning Styles Inventory [3], and

– Psychosocial features, supplied by the user through a simple questionaire
the first time the application is used by that student.
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Fig. 1. Evaluation Algorithm

MISTRAL user profile maintenance involves:

– Automatic evaluation through adaptive tests, True/False tests and multiple
choice tests, all of these update the user profile.

– Instructor evaluation is permitted through use of portfolio technique [2],
for activities that cannot be automatically evaluated. Portfolios are virtual
spaces on the server hard drive where activities are stored.

In general terms, the algorithm for updating the Student’s profile is based on
IRT and CAT, as shown in figure 1.

Profile updating in MISTRAL, considers the following steps:

1. To estimate the input knowledge level which is instructor configurable, at
the time the student is registered in the software, which is his/her presumed
knowledge level in that course.

2. Then, to determine the first question, the updated profile is used. Questions
are stored in the Database, ordered by difficulty level.

3. Once the student has completed the first item or he/she has answered the
first question of a CAT, evaluation occurs and the student profile is updated.
The knowledge level in our model is determined by means of a Bayesian
Method described in [6, 7].

4. When the stop criteria have been satisfied (the last activity or a certain
percentage for the objective has been reached), then the process is finished
or the next problem is selected. The stop criteria is a combination of a
minimum/maximum number of questions and a minimum value to reach
for each ”content” (contents of the material covered on the activity/test).
Besides the expected value for knowledge (θ), a minimum and a maximum
number of questions or activities are established.

2.2 The Knowledge in MISTRAL

When constructing a course (Course Model) the first action to carry out is to
establish the general objective, a unique objective for each course which will
guide the coursework.
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To accomplish this general objective, specific objectives must be established,
i.e., goals that can be reached in the short time. Linked to these specific ob-
jectives, a score for content is used, which is, the minimum knowledge units
included in each course. This learning content or coursework is reflected in goals
reached for each specific objective. Each goal is reachable through a series of
different problems that must be solved by students and stored for revision using
the portfolio technique. These activities are evaluated to determine if the stu-
dents know (or not) the contents, of the material, and consequently, if course
objectives have been reached.

2.3 The Bayesian Approach

A Bayesian Net (BN) [8] is an acyclic and directed graph in which nodes rep-
resent variables and arcs are causal influence relationships among them. Pa-
rameters used for representing uncertainty are conditioned probabilities for each
node, given their parent node states; i.e., if net variables are {Xi, i = 1, . . . , n}
and pa(Xi) represents the set that contains Xi parents, then the net parameters
are {P (Xi/pa(Xi), i = 1, . . . , n}. This set defines the compound probability dis-
tribution through:

P (X1, . . . , Xn) =
∏n

i=1 P (Xi/pa(Xi))

Henceforth, to define a BN we must specify: a set of variables X1, . . . , Xn,
a set of links among these variables in such a way that the resulting net is a
directed and acyclic graph, and for each variable its probability, conditioned to
its parent set, i.e., {P (Xi/pa(Xi)), i = 1, . . . , n}.

The following example can help establish these ideas: The simplest nontrivial
BN in MISTRAL contains two variables, called C and A1 (concept and activity
respectively), and one arc going from the first, to the second, as shown in figure 2.

Here C represents the student knowledge about a concept and A1 represents
his/her capability to solve a certain activity (or question if the activity is a test)
related to that concept. In other words, if a student knows a concept C, which
implies a causal influence concerning the fact that he/she is capable to solve A1,
which is represented through the arc that appears in figure 2. The meanings of
the values in the nodes are:

C A1  

P(+ A   /   C) = 0.9

P(+ A   /   C) = 0.01
P(+ C) = 0.03

1

1

+

Fig. 2. Two nodes Bayesian network
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P(+ A   /   +C) = 0.8

P(+ A   /     C) = 0.05

P(+ A   /  +C) = 0.9

C

A A
1

1

1

2

2

2
P(+ A   /     C) = 0.01

Fig. 3. Three nodes Bayesian network

- P (+C) = 0.3 indicates that 30 per cent of students in the study group know
the concept C. P (+A1/+C) = 0.9 indicates that the 90 per cent of students that
know the concept C successfully accomplish activity A1. P (+A1/¬C) = 0.01
indicates that only 1 per cent of students that do not know concept C are
capable of successfully solving the activity A1.

Knowing this information the a priori probability can be calculated for any
student that successfully accomplish an activity A1,

P (+A1) = P (+A1/ + C) · P (+C) + P (+A1/¬C) · P (¬C) = 0.277
P (¬A1) = P (¬A1/ + C) · P (+C) + P (¬A1/¬C) · P (¬C) = 0.723

And the probability of knowing C concept is given by Bayes Theorem:

P ∗(C) = P (C/A1) = P (C)·P (A1/C
P (A1)

P ∗(+C) = P (+C/ + A1) = P (+C)·P (+A1/+C)
P (+A1)

= 0.3·0.9
0.277 = 0.97473

If we add a new activity, A2, the BN is as shown in figure 3.
In this case, Bayes theorem let us calculate the probability of knowing C,

given A1 and A2 successfully solved.

P ∗(C) = P (C/A1, A2) = P (C)·P (A1,A2/C)
P (A1,A2)

In MISTRAL, knowledge is modelled from a Bayesian point of view. To do
that, it is necessary to define the three basic elements that constitute a bayesian
net: variables, links between variables and parameters. It allows us to get a
structure that encapsulates the data mentioned in the previous paragraph, with
variables defined through the General Objective, Specific Objectives, Contents
and Activities; links represent existing relationships between variables that take
into account the causal influence and, finally, parameters indicate the influence
weights that each child node has on its parent node.

The resulting bayesian net (see figure 4) is used in student profiling. Using
this net it is possible to detect the level of the student for each knowledge variable



618 P. Salcedo, M.A. Pinninghoff, and R. Contreras

GO

SO SO

C C C C

A A A A A A A

Q Q Q Q Q

1 2

1,1 1,n 2,1 2,n

1 2 3 4 5 6 7

1 2 3 4 5

Evaluation
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Fig. 4. Bayesian net for knowledge modelling

at any moment and determine the sequence of activities most appropriated to
complete the coursework.

Two important stages of the evaluation process are incorporated into this
model as shown in figure 4:

Student Diagnostic Process: The stage, in which the set of contents the stu-
dent knows (or doesn’t know) is created, based on evidence nodes, which in this
case are called activities nodes.

Evaluation Process: This stage is based on the previous diagnostic (contents
the student knows, or doesn’t know) and measures the degree of knowledge the
student has reached with respect to different levels. Specifically content level in
Specific Objectives and also the General Objective for the course.

In practical terms, the activities the students must carry out are evaluated
by a human examiner through the portfolio technique or automatically by the
system, depending on the nature of the activity. Results are received in the soft-
ware as an input for the student diagnostic, giving an estimate of the students’
knowledge. If, as a result of the diagnostic it is assumed that the student knows
the content, then the system goes to the next section of the coursework; other-
wise, MISTRAL will propose a series of activities to reinforce the unassimilated
knowledge, taking into account the student profile.

This is analogous to a classic evaluation in any CAT. The difference here is
that evaluation can be made by a human or by the software.
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2.4 The Computerized Adaptive Test in MISTRAL

Activities MISTRAL proposes are related to the students profile and the goals
of the coursework. These activities may be diverse, exercises, reading, report
generation, discussion participation, and so on. With a corresponding weight
(dependant on the coursework), different difficulty levels, and a characteristic
activity curve, to foresee the probability the student will successfully accomplish
the activity and if, in fact, he/she has the necessary knowledge. As an example
Table 1 shows part of an Object Orientation course.

In this context, there is an additional activity with the same features but it
uses a different treatment. It is the Computerized Adaptive Test. In the domain
of activities that can be proposed, a CAT is one of the more effective tools to
evaluate the student behavior and if the instructor can establish a complete
itemset, results are improved.

Generating a net similar to that used in the General Evaluation Process,
a new student profile is acquired. In this new net evaluation and diagnostic
steps are also supported, but here CAT is responsible for the diagnostic process,
in which, only items and concepts are required. Once the test is finished, the
platform, using the evaluating stage, is utilized to estimate the knowledge level
the student has reached for each specific objective and for the general objective
of the course.

CAT is responsible for the diagnostic processes requiring only questions and
concepts. Once the test is finished, and during the evaluation stage MISTRAL
considers each objective which will update the student’s profile. The correspond-
ing test algorithm is similar to the classic CATs presented. MISTRAL contains
the following basic elements: Answer model for each question, grading method,
question database, question selection method and stop criteria.

2.5 Answer Model Associated to Item in MISTRAL

It can be said that the Item Response Theory is a conceptual framework that is
based on basic measurement concepts using statistical and mathematical tools,
to try to find a theoretical description to explain empirical data behavior that
is obtained by applying a psychometric device. Parameters that the model esti-
mates, allow the evaluation of the technical quality for each item separately, and
for the device as a whole, estimating the level of each individual under examina-
tion for the specific topic. In MISTRAL, an item is considered an activity that
can be modelled through a mathematical function called Activity Characteristic
Curve (for item in IRT).

In IRT the item play a fundamental role; in MISTRAL this dichotomous
variable is the activity and what we are fundamentally interested in is whether
the student answered yes or no and not in what the total score was. For each
knowledge level θ there exists a probability to correctly answer the question,
represented by P (U = 1/θ); P (θ) for short. This function is called characteristic
activity curve (item). Typically the graphics for this function approach zero for
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Table 1. Part of the contents and activities for an Object Oriented Course

Cont. Activities c a b

1 Software Quality

1.1 Read text 1.1 ”Introduction”. Underline relevant 0 0.2 1
topics and put on your portfolio as Act1.1

1.2 Read text 1.2 ”Software Quality”. Underline relevant 0 0.2 1
topics and put on your portfolio as Act1.5

... ... ... ... ...

4 The UML Language

4.1 Read document 4.1.2 and underline items you think 0 0.2 1
are important. Put on your portfolio as Act4.1

4.1, 4.3 Study Power Point slides 4.1.1 of Jesus Garcia 5 1.2 2
(Murcia University). Write an abstract and put on
your portfolio as Act4.2 (using Word)

small values of θ and approach one for higher values. In MISTRAL, the following
three parametric formula have been chosen:

Pi(θ) = ci + (1 − ci) 1
1+e−1.7ai(θ−bi)

Where, Pi(θ) : the probability that a randomly chosen student has the knowl-
edge θ to successfully answer item i.

ai : is a discriminating index for item i
bi : difficulty level for item i.
ci : guess probability factor for item i

In Table 1, above, c is a guess probability factor, a is a discriminating index,
b is a difficulty level.

MISTRAL can be tested at http://152.74.11.209/pide/principal.htm.

3 Conclusions

MISTRAL has been developed to consider different course materials when eval-
uating status. The primary difficulty is determining parameters linked to each
activity and the time resources necessary to develop a complete course, typi-
cally about one year. In spite of that, the instructors’ evaluation has been very
favorable, because it is possible to connect evaluation and distance education
processes in a clear way. Besides that, MISTRAL allows the instructor to select
the most appropriate activity for a specific knowledge level for each student, and
because of this, a student having prior knowledge may require less time than a
student without prior training.
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The general purpose of this paper is to show the potential capabilities of
combining BN and IRT in support systems for distance teaching (learning) de-
velopment. In particular, we have shown the use of BN in student profiling and
IRT in adaptive processes.

MISTRAL incorporates these AI techniques with the proposed adaptation
and evaluation mechanisms. Emphasis in testing is directed towards different
coursework for students having different profiles. This is the basis of our work
and clearly shows its advantages and limitations.

In summary, the global objective of our work has been to study distance
teaching support systems from the point of view of knowledge engineering, as
knowledge based systems, and to search for whatever AI techniques will improve
results.
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Abstract. Last year we presented at the CEC2004 conference a novel
architecture for traffic light cycles optimization. The heart of this archi-
tecture is a Traffic Simulator used as the evaluation tool (fitness function)
within the Genetic Algorithm. Initially we allowed the simulator to have
a random behavior. Although the results from this sort of simulation
were consistent, it was necessary to run a huge amount of simulations
before we could get a significant value for the fitness of each individual
of the population . So we assumed some simplifications to be able to use
a deterministic simulator instead of the stochastic one. In this paper we
will confirm that it was the right decision; we will show that there is a
strong linear correlation between the results of both simulators. Hence
we show that the fitness ranking obtained by the deterministic simulator
is as good as the obtained with the stochastic one.

1 Introduction

The traffic affair is not only a comfort factor for every major city in the world,
but also a very important social and economical problem when not correctly
managed. The progressive overload process that traffic infrastructures are suf-
fering forces us to search for new solutions. In the vast majority of the cases it is
not viable to extend traffic infrastructures due to costs, lack of available space,
and environmental impacts. So it is a must to optimize existing infrastructures
in order to obtain from them the very best service they can provide.

One of the most relevant problems in traffic optimization is the traffic light
cycles optimization. In [1] it is demonstrated that the traffic light cycles have a
strong influence in traffic flow results. This is the reason why we decided to deal
with this problem.

In our group we presented in CEC2004 ([2]) a new architecture for optimizing
the traffic light cycles in a traffic network with several intersections. Through
other work in the same year ([3]) – we demonstrated that this architecture was
such a scalable one, performing optimizations with networks from 4 to 80 inter-
sections.

J. Mira and J.R. Álvarez (Eds.): IWINAC 2005, LNCS 3562, pp. 622–631, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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The rest of this article is organized as follows. In the next subsection, we
comment on the State of the Art about traffic optimization. In the section 2 we
briefly explain our system architecture. In section 3 we explain some concepts
related to traffic simulation and our simulator in detail. In section 4 we present
the comparative study of the stochastic simulator versus deterministic simulator.
Finally, section 5 includes our conclusions and some future work ideas.

1.1 State of the Art

There many works on traffic optimization. In this subsection we pretend to give
some outstanding examples. In [4] an “ad hoc” architecture is used to optimize
a 9 intersections traffic network. It uses Genetic Algorithms as an optimization
technique running on a single machine. The CORSIM model is used within the
evaluation function of the Genetic Algorithm. In this work scalability is not
solved. Authors recognize that it is a customized non scalable system.

In [5] it is proposed the concept of optimal green time algorithm, which
reduces average vehicle waiting time while improving average vehicle speed using
fuzzy rules and neural networks. This work only considers a very small amount
of traffic signals — two near intersections — in the cycle optimization.

In [6], a cycle-based isolated intersection is controlled applying efficient op-
timal control techniques based on linear systems control theory for alleviating
the recurrent isolated intersection congestion. Again this work deals with very
small scale traffic networks — one intersection.

In [7] the authors presented a neural network approach for optimal light tim-
ing. The approach is based on a neural network (or other function approximator)
serving as the basis for the control law, with the weight estimation occurring in
closed-loop mode via the simultaneous perturbation stochastic approximation
(SPSA) algorithm. The training process of the NN is fed exclusively with real
data. So, it would only be useful in systems with an on-line data acquisition
module installed.

In [8], Dr. Tveit, senior researcher with SINTEF (Norway), explains that a
common cycle time for a set of intersections is a worse approach than a dis-
tributed and individual one. We do agree with him. In our system every inter-
section has independent cycles.

In [9] a real-time local optimization of one intersection technique is proposed.
It is based on fuzzy logic. Although an adaptive optimization may be very inter-
esting – we realize this in [2] – we believe that a global optimization is a more
effective approach to the problem.

Finally, we cite [10]. In this paper, Petri Nets are applied to provide a modular
representation of urban traffic systems regulated by signalized intersections. An
interesting feature of this model consists in the possibility of representing the
offsets among different traffic light cycles as embedded in the structure of the
model itself. Even though it is a very interesting work, the authors only optimize
the coordination among traffic light timings. Our cycle optimization is a complete
flexible one because we implicitly optimize not only traffic light offsets but also
green times.
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2 Architecture of Our System

The architecture of our system comprises three items, namely a Genetic Algo-
rithm, a Cellular Automata based Traffic Simulator inside the evaluation routine
of the Genetic Algorithm, and a Beowulf Cluster as MIMD multicomputer. We
briefly will explain the Genetic Algorithm and the Beowulf cluster in this sec-
tion, and the Traffic Simulator in detail in the next one. To know more about
this architecture you may consult [2].

2.1 Genetic Algorithm Description

In this subsection we are to succinctly describe the genetic algorithm we are
employing. Again, for a more profound description have a look at the [2] paper.

We optimize the traffic light cycles for all the intersections in a traffic network.
Every cycle is represented by an array of integers. Every integer indicates which
traffic light is open at every cycle step for every intersection.

We have chosen a Truncation and Elitism combination as selection strategy.
It means that at every generation a little group of individuals — the best two
individuals in our case — is cloned to the next generation. The remainder of
the next generation is created by crossovering the individuals in a best fitness
subset – usually a 66 percent of the whole population. We have tested many
selection strategies but, so far, this one seems to have better results.

About the Crossover and Mutation operators, we have used a standard two
points crossover and a variable mutation probability within the mutation
operator.

Finally, for the evaluation we use the Mean Elapsed Time (M.E.T.). This is
the average elapsed time (iterations) since a new vehicle arrives at the network
until it leaves. We calculated the fitness simply as the inverse of the evaluation
value since this is a minimization problem.

2.2 Beowulf Cluster Description

The Architecture of our system is based on a five Pentium IV node Cluster
Beowulf, due to its very interesting price/performance relationship and the pos-
sibility of employing Open Software on it. On the other hand, this is a very
scalable MIMD computer, a very desirable feature in order to solve all sorts —
and scales — of traffic problems. The chosen operating system is Red Hat 9.

3 The Traffic Simulator

Traffic Simulation is known to be a very difficult task. There are two different
sorts of traffic models. The first one is the macroscopic model set. They are based
on Fluid Dynamics since they consider traffic flow as a continuous fluid. On the
other hand, we have microscopic approaches. In them, traffic is considered as a
set of discrete particles following some rules. In the last decade there is a com-
mon belief about the better performance of Microscopic approaches to do Traffic
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Modeling. One such widely used approach is the Cellular Automata Model. Sci-
entific literature is plenty of macroscopic approaches for traffic modeling. In the
50s appeared some “first order” continuum theories of highway traffic. In the 70s
and later some other “second order” models were developed in order to correct
the formers’ deficiencies. In [11] “second order” models are questioned due to
some serious problems, i.e. a negative flow predictions and negative speeds under
certain conditions.

Nowadays the microscopic simulators are widely used. Their main drawback
is that they have a lower performance than the macroscopic ones, except in the
case of the Cellular Automata. Cellular Automata and macroscopic simulators
have similar computing times.

3.1 The Cellular Automata as Inspiring Model

The Cellular Automata Simulators are based on the Cellular Automata Theory
developed by John Von Neumann [12] at the end of the forties at the Logic of
Computers Group of the University of Michigan. Cellular Automata are discrete
dynamical systems whose behavior is specified in terms of local relation. Space
is sampled into a grid, with each cell containing a few bits of data. As time
advances each cell decides its next state depending on the neighbors state and
following a small set of rules.

In the Cellular Automata model not only space is sampled into a set of points,
but also time and speed are sampled too. Time becomes iterations. It sets a rela-
tionship between time and iterations, e. g. 1(sec.) ≡ 1(iteration. Consequently,
speed turns into ”cells over iterations”.

In [13] we can find a well described list of microscopic models and a compar-
ative study of them. Although conclusions are not definitive, this work seems to
demonstrate that models using less parameters have better performance.

We have developed a traffic model based on the SK model ([14]) and the
SchCh model ([15]). The SchCh model is a combination of a highway traffic
model — Nagel-Schreckenberg [16] — and a very simple city traffic model —
Biham-Middleton-Levine [17]. The SK model adds the “smooth braking” for
avoiding abrupt speed changes. We decided to base our model in the SK model
due to its better results for all the tests shown in [13].

3.2 Our Improved Cellular Automata Model

Based on the Cellular Automata Model we have developed a non-linear model
for simulating the traffic behavior. The basic structure is the same like the one
used in the Cellular Automata. However, in our case we add two new levels of
complexity by the creation of two abstractions, “paths” and “vehicles”.

“paths” – are overlapping subsets included in the Cellular Automata set.
There is one “path” for every origin-destination pair. To do this, every one has
a collection of positions and, for each one of them, an array of permitted next
positions. In figure 1 we pretend to illustrate this idea.

“Vehicles” is an array of objects, each one of them having the following
properties:
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Fig. 1. Paths in our Improved Cellular Automata Model
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Fig. 2. Three Chromosome Histograms for the Huge Network

1. Position: the Cellular automata where it is situated. Note that every cell
may be occupied by one and only one vehicle.

2. Speed: the current speed of the vehicle. It means the number of cells it moves
over every simulator step.

3. Path: Every vehicle is univocally related to a Path in our model.

In our model these are the rules applied to every vehicle.

1. A vehicle ought to accelerate up to the maximum speed allowed. If it has no
obstacle in its way (other vehicle, or a red traffic light), it will accelerate at
a pace of 1 point per iteration, every iteration.

2. If a vehicle can reach an occupied position, it will reduce its speed and will
occupy the free position just behind the preceding.

3. If a vehicle has a red traffic light in front of, it will stop.
4. Smooth Braking: Once the vehicle position is updated, then the vehicle speed

is also updated. To do this, the number of free positions from current position
forward is taken into account.

5. Multi-lanning: When a vehicle is trying to move on, or update its speed, it
is allowed to consider positions on other parallel lanes.

By this means we can have lots of different path vehicles running in the
same network. This model may be seen as a set of Npaths traditional Cellular
Automata networks working in parallel over the same physical points.
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3.3 The Stochastic Version vs Deterministic Version

In our traffic simulator there are three key items susceptible of making the
simulator a Stochastic or a Deterministic one.

1. The cells updating order. In the Stochastic version the order of the cells to be
updated is chosen at random. In the Deterministic version we have written a
recursively function to calculate the dependencies graph. With it we prepare
a non-deadlocking updating order at the beginning of the simulation.

2. The new vehicle creation time. In the Stochastic version every input has a
new vehicle arrival probability. So the new vehicle creation time depends on
a random variable. In the Deterministic case we create a new vehicle at a
fixed period proportional to the traffic flow at every input.

3. The acceleration probability. In the Deterministic case when updating every
vehicle speed, if it has free way and is under the maximum allowed speed it
will always accelerate. However, in the Stochastic case, there is an acceler-
ating probability – usually bigger than 0.7. So it could accelerate or not.

4 Stochastic Deterministic Comparison

4.1 Tests Performed

We used three different traffic network scales for this test. Their statistics are
shown in the table 1.

Table 1. “Points” means the number of cells of the respective network, sampled at
a rate of a sample every 7 m approximately — the minimal distance required in a
traffic jam. “T.Lights” means the number of traffic lights optimized. “Intersections”,
“Inputs” and “Outputs” mean the number of intersections, inputs and outputs of the
respective network. Finally “Chromosome Size” means the number of bytes that every
chromosome includes

Scale Points T. Lights Intersections Inputs Outputs Chromosome Size

Small 80 16 4 6 8 96 bytes

Big 202 24 12 14 14 192 bytes

Huge 248 40 20 18 18 320 bytes

For every network scale we have launched 1000 stochastic simulations and a
deterministic one. The size of the population is 100 individuals. Every simulation
runs through 1500 iterations.

4.2 Results

In this part we present the results of the tests performed. In the first picture –
figure 2 – we display three individual histograms resulting from the ”huge case”
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test. They are the worst case, the best case and the mean case concerning the dif-
ference between deterministic and stochastic values obtained. Note that for every
individual there is a histogram on the top representing the stochastic simulator
outputs and a mark at the bottom representing the deterministic simulator value.

In this picture one may see that the stochastic simulator follows a unimodal
Gaussian distribution. This fact plus the low dispersion also observed mean that
it is a stochastically converging evaluation. Hence, we may trust that the arith-
metic mean of the statistics obtained from the stochastic simulator significantly
represent the fitness value of each individual in the population.
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Fig. 8. Huge Network Linear Regression

In second place we present a set of six pictures – figures 3 and 4 for the small
network; figures 5 and 6 for the big network and 7 and 8 for the huge network.
In figures 3, 5 and 7 we have represented:

1. At the first row we draw the Mean Elapsed Time from both simulators. Note
that in the stochastic case there are represented the average values of all the
executions.

2. At the second row it is represented the absolute value of the difference be-
tween the mean values of the stochastic simulator and the deterministic
simulator values.

3. Finally it is plotted the standard deviation of the stochastic simulator values.

From this pictures one may observe that the two main plots – mean stochastic
values and deterministic values – are highly dependent.

In figures 4, 6 and 8 we plot the linear regression function and the individual
evaluation values. It is obvious that there is a strong linear regression corre-
lating the mean stochastic values with the deterministic ones – shown in the
next paragraph. In this sense, the ”huge case” is the best fitted with a linear
regression.

Finally, we present the table 2 with some other interesting statistics. Note
that for every network scale we have two 100 element arrays, one for the stochas-
tic simulator values and one for the deterministic one. For clarifying purposes
we will represent the stochastic average values as x and the deterministic values
as y. So, every x[i] element means the average value of 1000 executions of the
stochastic simulator, and every y[i] element means the deterministic evaluation
value, both for the i chromosome.

ρ =
∑n

i=1(xi − x)(yi − y)
√∑n

i=1(xi − x)2
∑n

i=1 (yi − y)2
(1)
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Table 2. In the first column we have the network scale of the test. In the second one,
labeled as y, we have the average evaluation value in the deterministic case. Std(y)
means the standard deviation of every individual in the stochastic case. The following
two columns – x and Std(x) – mean the average of the standard deviation of every indi-
vidual in the stochastic case and the standard deviation respectively. In the fifth column
we have the Pearson Correlation Coefficient calculated as equation 1. The sixth column
displays the Mean Euclidean Distance – labeled as M.E.D. – between the individual
evaluations and the regression function. Finally we have the Mean Computational Cost
Ratio – labeled as M.C.C.R. – what is just the ratio between the execution time of the
stochastic simulations over the deterministic time

Scale y Std(y) x Std(x) ρ M.E.D. M.C.C.R.

Small 27.6250 2.6149 27.9701 1.0832 0.7952 2.4595 63.90

Big 31.3756 1.6793 31.4305 0.8630 0.8338 1.6786 74.49

Huge 34.8757 1.5745 34.8786 0.6929 0.9132 1.7214 70.87

In this table we want to remark that for every network scale there is a Pearson
Correlation Coefficient always over 0.7. It confirms that there is a strong linear
correlation between x and y. The last column is also very interesting. It shows
the high computational cost of using the stochastic simulator.

From figures 3, 4, 5, 6, 7 and 8 and the table 2 it is clear that we have a
strong linear correlation between values obtained from both simulators. So it
is acceptable to use the deterministic one for arranging the individuals of the
population in order of fitness value.

5 Conclusions

In a previous work we developed a new architecture for traffic light cycles opti-
mization. The heart of this architecture was a traffic simulator that we use as
evaluation device.

In that work we decided to use a deterministic simulator instead of a stochas-
tic one. Although traffic is known to be an intrinsic stochastic process, it was a
must to take this decision. It was extremely overwhelming to run all the stochas-
tic simulations needed to guide properly the genetic algorithm in comparison
with the only one simulation needed for the deterministic evaluation case.

In this paper we have founded that decision on numerical facts. Firstly we
confirm that the stochastic simulator is a suitable – convergent – statistical pro-
cess to compare with. Secondly we demonstrate that the deterministic simulator
outputs are highly linearly correlated with the stochastic ones. So our determin-
istic simulator can arrange the population ranking in order of fitness at least as
the stochastic simulator, but with a remarkable lower computing power.

As future work we will try to apply this system to a real world case and see
what happens. In further time we will improve this architecture trying to adapt
it to more dynamical situations.
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II-173
Arganda, Sara I-95
Arroyo, Angel II-519

Balkenius, Christian I-386
Barakova, Emilia I-58, I-356
Barbi, Michele I-77
Baroni, Fabiano I-106
Battaglia, Demian II-385
Becerra, Jose Antonio II-415, II-425
Bel Enguix, Gemma II-102
Bellas, Francisco II-425
Belov, Yuriy A. I-48
Benatchba, Karima II-212, II-324
Berlanga, Antonio II-499
Blasco, Xavier II-231, II-242
Bolea, José Angel I-68
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Garćıa, Jesús II-499, II-509
Garici, Mohamed Amine II-31
Garrigós, Francisco Javier I-319
Gaussier, Philippe I-346
Gharout, Said II-324
Giorno, Virginia I-186
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Juárez, Jose M. I-459
Juusola, Mikko I-150

Keck, Ingo R. II-558
Keymeulen, Didier II-366
Kim, Euntai II-133
Kim, Yong II-347
Knoblauch, Andreas II-405
Kok, Joost N. I-242
Koudil, Mouloud II-212, II-324
Krithivasan, Kamala I-290, I-300

Lafuente-Arroyo, Sergio I-508
Lago-Fernández, Luis F. II-291
Lang, Elmar W. II-558
Laroque, Philippe I-346
Lee, Doo-Soo I-195
Lee, Ju-sang II-221
Lee, Sanghyung II-133
Lee, Sangook II-221
Li, Wenhui I-469
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ş
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Song, Eunjoo II-133
Song, In-Ho I-195
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